Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered bacteria produce biofuel alternative for high-energy rocket fuel

27.03.2014

Researchers at the Georgia Institute of Technology and the Joint BioEnergy Institute have engineered a bacterium to synthesize pinene, a hydrocarbon produced by trees that could potentially replace high-energy fuels, such as JP-10, in missiles and other aerospace applications.

With improvements in process efficiency, the biofuel could supplement limited supplies of petroleum-based JP-10, and might also facilitate development of a new generation of more powerful engines.


By placing colonies of E. coli engineered to produce pinene into test tubes containing glucose, researchers were able to determine which enzyme combinations produced the hydrocarbon most efficiently.

Credit: Georgia Tech Photo: Rob Felt

By inserting enzymes from trees into the bacterium, first author and Georgia Tech graduate student Stephen Sarria, working under the guidance of assistant professor Pamela Peralta-Yahya, boosted pinene production six-fold over earlier bioengineering efforts. Though a more dramatic improvement will be needed before pinene dimers can compete with petroleum-based JP-10, the scientists believe they have identified the major obstacles that must be overcome to reach that goal.

Funded by Georgia Tech startup funds awarded to Peralta-Yahya's lab and by the U.S. Department of Energy's Office of Science, the research was reported February 27, 2014, in the journal ACS Synthetic Biology.

"We have made a sustainable precursor to a tactical fuel with a high energy density," said Peralta-Yahya, an assistant professor in the School of Chemistry and Biochemistry and the School of Chemical and Biomolecular Engineering at Georgia Tech. "We are concentrating on making a 'drop-in' fuel that looks just like what is being produced from petroleum and can fit into existing distribution systems."

Fuels with high energy densities are important in applications where minimizing fuel weight is important. The gasoline used to power automobiles and the diesel used mainly in trucks both contain less energy per liter than the JP-10. The molecular arrangement of JP-10, which includes multiple strained rings of carbon atoms, accounts for its higher energy density.

The amount of JP-10 that can be extracted from each barrel of oil is limited, and sources of potentially comparable compounds such as trees can't provide much help. The limited supply drives the price of JP-10 to around $25 per gallon. That price point gives researchers working on a biofuel alternative a real advantage over scientists working on replacing gasoline and diesel.

"If you are trying to make an alternative to gasoline, you are competing against $3 per gallon," Peralta-Yahya noted. "That requires a long optimization process. Our process will be competitive with $25 per gallon in a much shorter time."

While much research has gone into producing ethanol and bio-diesel fuels, comparatively little work has been done on replacements for the high-energy JP-10.

Peralta-Yahya and collaborators set out to improve on previous efforts by studying alternative enzymes that could be inserted into the E. coli bacterium. They settled on two classes of enzymes – three pinene synthases (PS) and three geranyl diphosphate synthases (GPPS) – and experimented to see which combinations produced the best results.

Their results were much better than earlier efforts, but the researchers were puzzled because for a different hydrocarbon, similar enzymes produced more fuel per liter. So they tried an additional step to improve their efficiency. They placed the two enzymes adjacent to one another in the E. coli cells, ensuring that molecules produced by one enzyme would immediately contact the other. That boosted their production to 32 milligrams per liter – much better than earlier efforts, but still not competitive with petroleum-based JP-10.

Peralta-Yahya believes the problem now lies with built-in process inhibitions that will be more challenging to address.

"We found that the enzyme was being inhibited by the substrate, and that the inhibition was concentration-dependent," she said. "Now we need either an enzyme that is not inhibited at high substrate concentrations, or we need a pathway that is able to maintain low substrate concentrations throughout the run. Both of these are difficult, but not insurmountable, problems."

To be competitive, the researchers will have to boost their production of pinene 26-fold. Peralta-Yahya says that's within the range of possibilities for bioengineering the E. coli.

"Even though we are still in the milligrams per liter level, because the product we are trying to make is so much more expensive than diesel or gasoline means that we are relatively closer," she said.

Theoretically, it may be possible to produce pinene at a cost lower than that of petroleum-based sources. If that can be done – and if the resulting bio-fuel operates well in these applications – that could open the door for lighter and more powerful engines fueled by increased supplies of high-energy fuels. Pinene dimers, which result from the dimerization of pinene, have already been shown to have an energy density similar to that of JP-10.

###

Co-authors from the Joint BioEnergy Institute included Betty Wong, Hector Garcia Martin and Professor Jay D. Keasling, co-corresponding author of the paper.

CITATION: Stephen Sarria, et al., "Microbial Synthesis of Pinene," (ACS Synthetic Biology, 2014). (http://dx.doi.org/10.1021/sb4001382).

This work was started at the DOE Joint BioEnergy Institute (JBEI) and finished at the Georgia Institute of Technology. The work at JBEI was funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. The work at the Georgia Institute of Technology was funded by startup funds awarded to the Peralta-Yahya laboratory. Any opinions expressed are those of the authors and do not necessarily represent the official views of the DOE.

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

Further reports about: ACS Biochemistry Biology Chemical Energy Environmental Laboratory enzyme

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>