Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy transmission for railroad vehicles without overhead wires

30.06.2014

Induction instead of overhead wires

Anyone who frequently uses trains knows this to be true: overhead lines are prone to faults, increasingly leading to delays and cancellations. An alternative to this is energy transmission without overhead lines.

In the framework of the Allianz DLR@Uni-Stuttgart, scientists from two institutes at the University of Stuttgart as well as the German Aerospace Centre (DLR) are researching inductive (contact-free) systems that are to replace the overhead lines one day.

For this purpose the State of Baden-Württemberg has set aside 860,000 Euros. “With these funds the state government is supporting the researchers at DLR and the University of Stuttgart in exploiting the enormous potentials of contact-free energy transmission for fewer noise emissions, less wear and tear and maintenance work and less energy consumption“, explained the Finance and Economy Minister Nils Schmid on the occasion of the presentation of the research report. As the next step the scientists want to develop a demonstrator that will undoubtedly also be of interest for the industry.

... more about:
»DLR »Electrical »Energy »Machine »Vehicle »existing »railroad »vehicles

Overhead lines for electrically operated railroad vehicles are exposed to the weather and other environmental influences that could lead to a high degree of wear and tear and pose a risk for the environment in the case of damage. In addition the lines and pantographs are a significant source of noise and the high aerodynamic air resistance has a significant impact on the energy consumption.

Induction instead of overhead lines is therefore the goal of the project for which the DLR Institute for Vehicle Concepts has joined forces with the Institutes of Electrical Energy Conversion (IEW) and Machine Elements (IMA, railroad vehicle technology and reliability technology divisions) at the University of Stuttgart. The scientists are thereby relying on a principle according to which electric cars and trams can already be charged contact-free with limited transmission power.

Its mode of operation corresponds to that of a sliced transformer, whereby the primary coil is integrated in the drive and the secondary coil is located in the vehicle. The energy transfer is done via a generated magnetic field and is possible over the complete length of the vehicle on a large scale. In this respect each part segment of long trains with a distributed driving power can be supplied separately with energy without an elaborate energy supply line through the vehicle being necessary. Through this each carriage that has its own drive can for example be moved autonomously in the shunting area.

Whilst the IMA dedicated itself in particular to the mechanical design and the integration of the new components in the vehicle as well as the reliability and availability of the energy transfer, the IEW was particularly involved with the design of the energy transfer system as well as the supply electronics and the electrical components. No wear and tear, less susceptibility to faults and as high an efficiency factor as possible (over 90 percent) and also with far more efficiency were thereby of primary interest. Moreover, attention was paid to maintaining a downward compatibility with existing rail systems as far as possible and to continuing to improve train control systems.

“The inductive energy transfer developed in this interdisciplinary project enables an efficient and robust supply of railroad vehicles with electrical energy“, is how Prof. Johann-Dietrich Wörner, Chairman of the Board of the German Aerospace Centre (DLR) expressed it. An essential viewpoint is that the railroad vehicles through a hybrid energy supply can be driven on new routes as well as on the existing railroad network.“

Further information
Prof. Bernd Bertsche, University of Stuttgart, Institute for Machine Elements, Reliability Technology Division, Tel.: 0711/685-66165, Email: bernd.bertsche (at) ima.uni-stuttgart.de
Prof. Dieter Bögle, University of Stuttgart, Institute for Machine Elements, Railroad Vehicle Technology Division, Tel. 0711/685-66098, Email: dieter.boegle (at) ima.uni-stuttgart.de
Prof. Nejila Parspour, University of Stuttgart, Institute of Electrical Energy Conversion, Tel.:0711/685-67818, Email: nejila.parspours (at) iew.uni-stuttart.de
Dr. Joachim Winter, DLR-Institute for Vehicle Concepts, Project Manager of the project “Energy transfer without overhead lines“, Tel: 0711/6862-274, Email: joachim.winter (at) dlr.de.

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft

Further reports about: DLR Electrical Energy Machine Vehicle existing railroad vehicles

More articles from Power and Electrical Engineering:

nachricht On the crest of the wave: Electronics on a time scale shorter than a cycle of light
30.07.2015 | Universität Regensburg

nachricht Ultra-Thin Hollow Nanocages Could Reduce Platinum Use in Fuel Cell Electrodes
27.07.2015 | Georgia Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>