Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy transmission for railroad vehicles without overhead wires

30.06.2014

Induction instead of overhead wires

Anyone who frequently uses trains knows this to be true: overhead lines are prone to faults, increasingly leading to delays and cancellations. An alternative to this is energy transmission without overhead lines.

In the framework of the Allianz DLR@Uni-Stuttgart, scientists from two institutes at the University of Stuttgart as well as the German Aerospace Centre (DLR) are researching inductive (contact-free) systems that are to replace the overhead lines one day.

For this purpose the State of Baden-Württemberg has set aside 860,000 Euros. “With these funds the state government is supporting the researchers at DLR and the University of Stuttgart in exploiting the enormous potentials of contact-free energy transmission for fewer noise emissions, less wear and tear and maintenance work and less energy consumption“, explained the Finance and Economy Minister Nils Schmid on the occasion of the presentation of the research report. As the next step the scientists want to develop a demonstrator that will undoubtedly also be of interest for the industry.

... more about:
»DLR »Electrical »Energy »Machine »Vehicle »existing »railroad »vehicles

Overhead lines for electrically operated railroad vehicles are exposed to the weather and other environmental influences that could lead to a high degree of wear and tear and pose a risk for the environment in the case of damage. In addition the lines and pantographs are a significant source of noise and the high aerodynamic air resistance has a significant impact on the energy consumption.

Induction instead of overhead lines is therefore the goal of the project for which the DLR Institute for Vehicle Concepts has joined forces with the Institutes of Electrical Energy Conversion (IEW) and Machine Elements (IMA, railroad vehicle technology and reliability technology divisions) at the University of Stuttgart. The scientists are thereby relying on a principle according to which electric cars and trams can already be charged contact-free with limited transmission power.

Its mode of operation corresponds to that of a sliced transformer, whereby the primary coil is integrated in the drive and the secondary coil is located in the vehicle. The energy transfer is done via a generated magnetic field and is possible over the complete length of the vehicle on a large scale. In this respect each part segment of long trains with a distributed driving power can be supplied separately with energy without an elaborate energy supply line through the vehicle being necessary. Through this each carriage that has its own drive can for example be moved autonomously in the shunting area.

Whilst the IMA dedicated itself in particular to the mechanical design and the integration of the new components in the vehicle as well as the reliability and availability of the energy transfer, the IEW was particularly involved with the design of the energy transfer system as well as the supply electronics and the electrical components. No wear and tear, less susceptibility to faults and as high an efficiency factor as possible (over 90 percent) and also with far more efficiency were thereby of primary interest. Moreover, attention was paid to maintaining a downward compatibility with existing rail systems as far as possible and to continuing to improve train control systems.

“The inductive energy transfer developed in this interdisciplinary project enables an efficient and robust supply of railroad vehicles with electrical energy“, is how Prof. Johann-Dietrich Wörner, Chairman of the Board of the German Aerospace Centre (DLR) expressed it. An essential viewpoint is that the railroad vehicles through a hybrid energy supply can be driven on new routes as well as on the existing railroad network.“

Further information
Prof. Bernd Bertsche, University of Stuttgart, Institute for Machine Elements, Reliability Technology Division, Tel.: 0711/685-66165, Email: bernd.bertsche (at) ima.uni-stuttgart.de
Prof. Dieter Bögle, University of Stuttgart, Institute for Machine Elements, Railroad Vehicle Technology Division, Tel. 0711/685-66098, Email: dieter.boegle (at) ima.uni-stuttgart.de
Prof. Nejila Parspour, University of Stuttgart, Institute of Electrical Energy Conversion, Tel.:0711/685-67818, Email: nejila.parspours (at) iew.uni-stuttart.de
Dr. Joachim Winter, DLR-Institute for Vehicle Concepts, Project Manager of the project “Energy transfer without overhead lines“, Tel: 0711/6862-274, Email: joachim.winter (at) dlr.de.

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft

Further reports about: DLR Electrical Energy Machine Vehicle existing railroad vehicles

More articles from Power and Electrical Engineering:

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht High-precision magnetic field sensing
05.12.2016 | ETH Zurich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>