Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy transmission for railroad vehicles without overhead wires

30.06.2014

Induction instead of overhead wires

Anyone who frequently uses trains knows this to be true: overhead lines are prone to faults, increasingly leading to delays and cancellations. An alternative to this is energy transmission without overhead lines.

In the framework of the Allianz DLR@Uni-Stuttgart, scientists from two institutes at the University of Stuttgart as well as the German Aerospace Centre (DLR) are researching inductive (contact-free) systems that are to replace the overhead lines one day.

For this purpose the State of Baden-Württemberg has set aside 860,000 Euros. “With these funds the state government is supporting the researchers at DLR and the University of Stuttgart in exploiting the enormous potentials of contact-free energy transmission for fewer noise emissions, less wear and tear and maintenance work and less energy consumption“, explained the Finance and Economy Minister Nils Schmid on the occasion of the presentation of the research report. As the next step the scientists want to develop a demonstrator that will undoubtedly also be of interest for the industry.

... more about:
»DLR »Electrical »Energy »Machine »Vehicle »existing »railroad »vehicles

Overhead lines for electrically operated railroad vehicles are exposed to the weather and other environmental influences that could lead to a high degree of wear and tear and pose a risk for the environment in the case of damage. In addition the lines and pantographs are a significant source of noise and the high aerodynamic air resistance has a significant impact on the energy consumption.

Induction instead of overhead lines is therefore the goal of the project for which the DLR Institute for Vehicle Concepts has joined forces with the Institutes of Electrical Energy Conversion (IEW) and Machine Elements (IMA, railroad vehicle technology and reliability technology divisions) at the University of Stuttgart. The scientists are thereby relying on a principle according to which electric cars and trams can already be charged contact-free with limited transmission power.

Its mode of operation corresponds to that of a sliced transformer, whereby the primary coil is integrated in the drive and the secondary coil is located in the vehicle. The energy transfer is done via a generated magnetic field and is possible over the complete length of the vehicle on a large scale. In this respect each part segment of long trains with a distributed driving power can be supplied separately with energy without an elaborate energy supply line through the vehicle being necessary. Through this each carriage that has its own drive can for example be moved autonomously in the shunting area.

Whilst the IMA dedicated itself in particular to the mechanical design and the integration of the new components in the vehicle as well as the reliability and availability of the energy transfer, the IEW was particularly involved with the design of the energy transfer system as well as the supply electronics and the electrical components. No wear and tear, less susceptibility to faults and as high an efficiency factor as possible (over 90 percent) and also with far more efficiency were thereby of primary interest. Moreover, attention was paid to maintaining a downward compatibility with existing rail systems as far as possible and to continuing to improve train control systems.

“The inductive energy transfer developed in this interdisciplinary project enables an efficient and robust supply of railroad vehicles with electrical energy“, is how Prof. Johann-Dietrich Wörner, Chairman of the Board of the German Aerospace Centre (DLR) expressed it. An essential viewpoint is that the railroad vehicles through a hybrid energy supply can be driven on new routes as well as on the existing railroad network.“

Further information
Prof. Bernd Bertsche, University of Stuttgart, Institute for Machine Elements, Reliability Technology Division, Tel.: 0711/685-66165, Email: bernd.bertsche (at) ima.uni-stuttgart.de
Prof. Dieter Bögle, University of Stuttgart, Institute for Machine Elements, Railroad Vehicle Technology Division, Tel. 0711/685-66098, Email: dieter.boegle (at) ima.uni-stuttgart.de
Prof. Nejila Parspour, University of Stuttgart, Institute of Electrical Energy Conversion, Tel.:0711/685-67818, Email: nejila.parspours (at) iew.uni-stuttart.de
Dr. Joachim Winter, DLR-Institute for Vehicle Concepts, Project Manager of the project “Energy transfer without overhead lines“, Tel: 0711/6862-274, Email: joachim.winter (at) dlr.de.

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft

Further reports about: DLR Electrical Energy Machine Vehicle existing railroad vehicles

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>