Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy transmission for railroad vehicles without overhead wires

30.06.2014

Induction instead of overhead wires

Anyone who frequently uses trains knows this to be true: overhead lines are prone to faults, increasingly leading to delays and cancellations. An alternative to this is energy transmission without overhead lines.

In the framework of the Allianz DLR@Uni-Stuttgart, scientists from two institutes at the University of Stuttgart as well as the German Aerospace Centre (DLR) are researching inductive (contact-free) systems that are to replace the overhead lines one day.

For this purpose the State of Baden-Württemberg has set aside 860,000 Euros. “With these funds the state government is supporting the researchers at DLR and the University of Stuttgart in exploiting the enormous potentials of contact-free energy transmission for fewer noise emissions, less wear and tear and maintenance work and less energy consumption“, explained the Finance and Economy Minister Nils Schmid on the occasion of the presentation of the research report. As the next step the scientists want to develop a demonstrator that will undoubtedly also be of interest for the industry.

... more about:
»DLR »Electrical »Energy »Machine »Vehicle »existing »railroad »vehicles

Overhead lines for electrically operated railroad vehicles are exposed to the weather and other environmental influences that could lead to a high degree of wear and tear and pose a risk for the environment in the case of damage. In addition the lines and pantographs are a significant source of noise and the high aerodynamic air resistance has a significant impact on the energy consumption.

Induction instead of overhead lines is therefore the goal of the project for which the DLR Institute for Vehicle Concepts has joined forces with the Institutes of Electrical Energy Conversion (IEW) and Machine Elements (IMA, railroad vehicle technology and reliability technology divisions) at the University of Stuttgart. The scientists are thereby relying on a principle according to which electric cars and trams can already be charged contact-free with limited transmission power.

Its mode of operation corresponds to that of a sliced transformer, whereby the primary coil is integrated in the drive and the secondary coil is located in the vehicle. The energy transfer is done via a generated magnetic field and is possible over the complete length of the vehicle on a large scale. In this respect each part segment of long trains with a distributed driving power can be supplied separately with energy without an elaborate energy supply line through the vehicle being necessary. Through this each carriage that has its own drive can for example be moved autonomously in the shunting area.

Whilst the IMA dedicated itself in particular to the mechanical design and the integration of the new components in the vehicle as well as the reliability and availability of the energy transfer, the IEW was particularly involved with the design of the energy transfer system as well as the supply electronics and the electrical components. No wear and tear, less susceptibility to faults and as high an efficiency factor as possible (over 90 percent) and also with far more efficiency were thereby of primary interest. Moreover, attention was paid to maintaining a downward compatibility with existing rail systems as far as possible and to continuing to improve train control systems.

“The inductive energy transfer developed in this interdisciplinary project enables an efficient and robust supply of railroad vehicles with electrical energy“, is how Prof. Johann-Dietrich Wörner, Chairman of the Board of the German Aerospace Centre (DLR) expressed it. An essential viewpoint is that the railroad vehicles through a hybrid energy supply can be driven on new routes as well as on the existing railroad network.“

Further information
Prof. Bernd Bertsche, University of Stuttgart, Institute for Machine Elements, Reliability Technology Division, Tel.: 0711/685-66165, Email: bernd.bertsche (at) ima.uni-stuttgart.de
Prof. Dieter Bögle, University of Stuttgart, Institute for Machine Elements, Railroad Vehicle Technology Division, Tel. 0711/685-66098, Email: dieter.boegle (at) ima.uni-stuttgart.de
Prof. Nejila Parspour, University of Stuttgart, Institute of Electrical Energy Conversion, Tel.:0711/685-67818, Email: nejila.parspours (at) iew.uni-stuttart.de
Dr. Joachim Winter, DLR-Institute for Vehicle Concepts, Project Manager of the project “Energy transfer without overhead lines“, Tel: 0711/6862-274, Email: joachim.winter (at) dlr.de.

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft

Further reports about: DLR Electrical Energy Machine Vehicle existing railroad vehicles

More articles from Power and Electrical Engineering:

nachricht Flexible OLED applications arrive
28.06.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Energy from Sunlight: Further Steps towards Artificial Photosynthesis
24.06.2016 | Universität Basel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>