Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Energy transmission for railroad vehicles without overhead wires


Induction instead of overhead wires

Anyone who frequently uses trains knows this to be true: overhead lines are prone to faults, increasingly leading to delays and cancellations. An alternative to this is energy transmission without overhead lines.

In the framework of the Allianz DLR@Uni-Stuttgart, scientists from two institutes at the University of Stuttgart as well as the German Aerospace Centre (DLR) are researching inductive (contact-free) systems that are to replace the overhead lines one day.

For this purpose the State of Baden-Württemberg has set aside 860,000 Euros. “With these funds the state government is supporting the researchers at DLR and the University of Stuttgart in exploiting the enormous potentials of contact-free energy transmission for fewer noise emissions, less wear and tear and maintenance work and less energy consumption“, explained the Finance and Economy Minister Nils Schmid on the occasion of the presentation of the research report. As the next step the scientists want to develop a demonstrator that will undoubtedly also be of interest for the industry.

... more about:
»DLR »Electrical »Energy »Machine »Vehicle »existing »railroad »vehicles

Overhead lines for electrically operated railroad vehicles are exposed to the weather and other environmental influences that could lead to a high degree of wear and tear and pose a risk for the environment in the case of damage. In addition the lines and pantographs are a significant source of noise and the high aerodynamic air resistance has a significant impact on the energy consumption.

Induction instead of overhead lines is therefore the goal of the project for which the DLR Institute for Vehicle Concepts has joined forces with the Institutes of Electrical Energy Conversion (IEW) and Machine Elements (IMA, railroad vehicle technology and reliability technology divisions) at the University of Stuttgart. The scientists are thereby relying on a principle according to which electric cars and trams can already be charged contact-free with limited transmission power.

Its mode of operation corresponds to that of a sliced transformer, whereby the primary coil is integrated in the drive and the secondary coil is located in the vehicle. The energy transfer is done via a generated magnetic field and is possible over the complete length of the vehicle on a large scale. In this respect each part segment of long trains with a distributed driving power can be supplied separately with energy without an elaborate energy supply line through the vehicle being necessary. Through this each carriage that has its own drive can for example be moved autonomously in the shunting area.

Whilst the IMA dedicated itself in particular to the mechanical design and the integration of the new components in the vehicle as well as the reliability and availability of the energy transfer, the IEW was particularly involved with the design of the energy transfer system as well as the supply electronics and the electrical components. No wear and tear, less susceptibility to faults and as high an efficiency factor as possible (over 90 percent) and also with far more efficiency were thereby of primary interest. Moreover, attention was paid to maintaining a downward compatibility with existing rail systems as far as possible and to continuing to improve train control systems.

“The inductive energy transfer developed in this interdisciplinary project enables an efficient and robust supply of railroad vehicles with electrical energy“, is how Prof. Johann-Dietrich Wörner, Chairman of the Board of the German Aerospace Centre (DLR) expressed it. An essential viewpoint is that the railroad vehicles through a hybrid energy supply can be driven on new routes as well as on the existing railroad network.“

Further information
Prof. Bernd Bertsche, University of Stuttgart, Institute for Machine Elements, Reliability Technology Division, Tel.: 0711/685-66165, Email: bernd.bertsche (at)
Prof. Dieter Bögle, University of Stuttgart, Institute for Machine Elements, Railroad Vehicle Technology Division, Tel. 0711/685-66098, Email: dieter.boegle (at)
Prof. Nejila Parspour, University of Stuttgart, Institute of Electrical Energy Conversion, Tel.:0711/685-67818, Email: nejila.parspours (at)
Dr. Joachim Winter, DLR-Institute for Vehicle Concepts, Project Manager of the project “Energy transfer without overhead lines“, Tel: 0711/6862-274, Email: joachim.winter (at)

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft

Further reports about: DLR Electrical Energy Machine Vehicle existing railroad vehicles

More articles from Power and Electrical Engineering:

nachricht Solid progress in carbon capture
27.10.2016 | King Abdullah University of Science & Technology (KAUST)

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>