Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Energy-saving method checks refrigerant level in air conditioners

Engineers have developed a technique that saves energy and servicing costs by indicating when air conditioners are low on refrigerant, preventing the units from working overtime.

The new "virtual refrigerant charge sensor" is particularly practical for automotive air conditioners, which tend to leak refrigerant more than other types of units, and also for household central air conditioning units, said James Braun, a professor of mechanical engineering.

Maintaining the proper "charge," or amount of refrigerant in a system, saves energy because air conditioners low on refrigerant must operate longer to achieve the same degree of cooling as properly charged units.

"Not only does the energy efficiency go down, but you also reduce the lifetime of the unit because it has to work harder, causing parts to wear out faster," Braun said. "It's also very time consuming and costly to have a technician check the refrigerant and charge it up to specification. To accurately learn how much charge is in the system, you have to remove all of the refrigerant and weigh it, a procedure that requires a vacuum pump and is quite time consuming."

The new alternative works by using sensors to monitor the temperature of refrigerant at various points along the tubing in an air-conditioning unit. The technique is easy to use because the sensors are simply attached to the outside of the tubing, Braun said.

Researchers tested the system on various types of air conditioners running on conventional refrigerants, including R-22 and the more environmentally friendly R-410A, which is replacing R-22 in the latest units. The research has been funded by the California Energy Commission through its Public Interest Energy Research, or PIER, program.

Findings are detailed in a research paper presented June 22 during a meeting of the American Society of Heating, Refrigerating and Air Conditioning Engineers in Louisville, Ky. The technique also was described in a paper published in the journal HVAC&R Research. The paper was written by Braun and former mechanical engineering doctoral student Haorong Li, who is now an assistant professor of architectural engineering at the University of Nebraska.

Another research project at Purdue is nearing completion and has involved a more extensive evaluation of the virtual charge sensor. The project, also funded through California's PIER program, has been led by graduate student Woohyun Kim.

Purdue has applied for a patent on the technique, developed in research based at the university's Ray W. Herrick Laboratories.

Li and Braun created a software algorithm that interprets temperature-sensor data to estimate the amount of refrigerant in the system. The four sensors are attached to tubing running into and out of components called heat exchangers.

In air conditioning and refrigeration systems, liquid refrigerant evaporates in a heat exchanger called an evaporator, cooling the air. The refrigerant vapor turns back into a liquid in another heat exchanger called a condenser. During these evaporation and condensing steps, the refrigerant undergoes dramatic temperature changes.

Automotive air conditioning units equipped with the new refrigerant-charge system could activate a warning light on a car's dashboard. Technicians servicing home air conditioners might simply plug a personal digital assistant into the unit to read the refrigerant-charge information, Braun said.

Researchers began developing the technique four years ago.

"The method could be commercialized if a company invested some time in the implementation side," Braun said.

Writer: Emil Venere, 765-494-4709,
Source: James Braun, 765-494-9157,
Related Web site:
James Braun:

Emil Venere | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>