Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-saving method checks refrigerant level in air conditioners

25.06.2009
Engineers have developed a technique that saves energy and servicing costs by indicating when air conditioners are low on refrigerant, preventing the units from working overtime.

The new "virtual refrigerant charge sensor" is particularly practical for automotive air conditioners, which tend to leak refrigerant more than other types of units, and also for household central air conditioning units, said James Braun, a professor of mechanical engineering.

Maintaining the proper "charge," or amount of refrigerant in a system, saves energy because air conditioners low on refrigerant must operate longer to achieve the same degree of cooling as properly charged units.

"Not only does the energy efficiency go down, but you also reduce the lifetime of the unit because it has to work harder, causing parts to wear out faster," Braun said. "It's also very time consuming and costly to have a technician check the refrigerant and charge it up to specification. To accurately learn how much charge is in the system, you have to remove all of the refrigerant and weigh it, a procedure that requires a vacuum pump and is quite time consuming."

The new alternative works by using sensors to monitor the temperature of refrigerant at various points along the tubing in an air-conditioning unit. The technique is easy to use because the sensors are simply attached to the outside of the tubing, Braun said.

Researchers tested the system on various types of air conditioners running on conventional refrigerants, including R-22 and the more environmentally friendly R-410A, which is replacing R-22 in the latest units. The research has been funded by the California Energy Commission through its Public Interest Energy Research, or PIER, program.

Findings are detailed in a research paper presented June 22 during a meeting of the American Society of Heating, Refrigerating and Air Conditioning Engineers in Louisville, Ky. The technique also was described in a paper published in the journal HVAC&R Research. The paper was written by Braun and former mechanical engineering doctoral student Haorong Li, who is now an assistant professor of architectural engineering at the University of Nebraska.

Another research project at Purdue is nearing completion and has involved a more extensive evaluation of the virtual charge sensor. The project, also funded through California's PIER program, has been led by graduate student Woohyun Kim.

Purdue has applied for a patent on the technique, developed in research based at the university's Ray W. Herrick Laboratories.

Li and Braun created a software algorithm that interprets temperature-sensor data to estimate the amount of refrigerant in the system. The four sensors are attached to tubing running into and out of components called heat exchangers.

In air conditioning and refrigeration systems, liquid refrigerant evaporates in a heat exchanger called an evaporator, cooling the air. The refrigerant vapor turns back into a liquid in another heat exchanger called a condenser. During these evaporation and condensing steps, the refrigerant undergoes dramatic temperature changes.

Automotive air conditioning units equipped with the new refrigerant-charge system could activate a warning light on a car's dashboard. Technicians servicing home air conditioners might simply plug a personal digital assistant into the unit to read the refrigerant-charge information, Braun said.

Researchers began developing the technique four years ago.

"The method could be commercialized if a company invested some time in the implementation side," Braun said.

Writer: Emil Venere, 765-494-4709, venere@purdue.edu
Source: James Braun, 765-494-9157, jbraun@purdue.edu
Related Web site:
James Braun: https://engineering.purdue.edu/ME/People/ptProfile?id=11824

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Ultrathin device harvests electricity from human motion
24.07.2017 | Vanderbilt University

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

Getting closer to porous, light-responsive materials

26.07.2017 | Materials Sciences

Large, distant comets more common than previously thought

26.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>