Energy from Sunlight: Further Steps towards Artificial Photosynthesis

Green plants are able to temporarily store electric charges after the absorption of sunlight by using a so-called molecular charge accumulator. The two research teams were able to observe this process in artificial molecules that they created specifically for this experiment.

Two charges stored shortly

The chemists excited the artificial molecules using a laser, which then made it possible to store two negative charges for a short time span for the very first time. They succeeded in storing the charges long enough, namely for 870 nanoseconds, thus making them effectively usable for artificial photosynthesis.

Importantly, the investigators carried out the charge accumulation without employing any sacrificial reagents. So far, charge accumulations in artificial molecules had only been possible using such sacrificial reagents. Large amounts of energy had to be used for these, which made a sustainable conversion of sunlight into chemically stored energy impossible.

“Our results represent a fundamental and important step on the path to artificial photosynthesis”, say Prof. Oliver Wenger (University of Basel) and Prof. Peter Hamm (University of Zurich), who jointly led the study. However, they claim, it is still a long way to go until the aspired sustainable application will become reality.

Conversion into fuel

The two research groups of the Universities of Basel and Zurich are currently investigating how the charge accumulation can be converted into a chemical fuel. As an inspiration, they look at green plants, which use charge accumulation to build vital, energy-rich substances. Artificial photosynthesis is considered a promising element of a sustainable future energy supply.

Original source

M. Orazietti, M. Kuss-Petermann, P. Hamm, O. S. Wenger
Light-Driven Electron Accumulation in a Molecular Pentad
Angew. Chem. Int. Ed. (2016), doi: 10.1002/anie.201604030 (English Version) und 10.1002/ange.201604030 (German Version).

Further information

Prof. Oliver Wenger, University of Basel, Department of Chemistry, phone: +41 61 267 11 46, email: oliver.wenger@unibas.ch

Prof. Peter Hamm, University of Zurich, Department of Chemistry, phone: +41 44 635 44 31, email: peter.hamm@chem.uzh.ch

http://onlinelibrary.wiley.com/doi/10.1002/anie.201604030/abstract – Abstract

Media Contact

Christoph Dieffenbacher Universität Basel

More Information:

http://www.unibas.ch

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors