Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy express focus issue: Optics in LEDs for lighting

06.07.2011
Research highlights improved efficiency, reduced costs for solid-state lighting applications

Light-emitting diodes (LEDs) have been changing the way we see the world since the 1960s. Their usage in everyday life is pervasive and continues to increase thanks to the cutting-edge research being done in the field of optics.

To highlight breakthroughs in LEDs, the editors of Energy Express, a bi-monthly supplement to Optics Express, the open-access journal of the Optical Society (OSA), today published a special Focus Issue on Optics in LEDs for Lighting. The issue is organized and edited by Guest Editors Jae-Hyun Ryou and Russell Dupuis of the Georgia Institute of Technology.

"The papers in this Focus Issue represent the outcome of state-of-the-art research and development by recognized experts in the field of LEDs, said Ryou. "These latest advances are truly exceptional and will prove to be invaluable to advancements in lighting technology."

Summary

LEDs continue to prove themselves as the future in lighting, with applications in everything from vehicle headlights to stadium displays to video cameras. In addition to their current commercial applications, LEDs have opened up an era of solid-state lighting (SSL) with capabilities of emitting photons of either primary colors or white light. With their continuous improvements in luminous efficiency compared with conventional light sources, LEDs will lead to significant energy savings when used as a ubiquitous light source for general lighting applications. The papers in this Focus Issue feature state-of-the-art research and development that address the technical challenges and possible solutions for visible LEDs to be widely used in SSL, while also focusing on the major challenges associated with improving luminous efficiency and simultaneously delivering superb color quality at a reasonable cost.

Key Findings & Select Papers

The following papers are some of the highlights of the Energy Express Focus Issue on Optics in LEDs for Lighting. All are included in Volume 20, issue S4 and can be accessed online at http://www.opticsinfobase.org/ee.

Typical III-N-based visible LED structures are grown on sapphire substrates; however, a possible way to lower the capital cost of LED-based SSL technologies is to fabricate the devices on silicon substrates. Kei May Lau, et al. report blue-emitting LEDs on silicon substrates to lower the manufacturing cost of visible LEDs. The paper addresses many important technical issues associated with LEDs on silicon substrates, such as strain management and crack-formation in the epitaxial structure, thermal management of the chips, and external quantum efficiency of the devices including light extraction. pp. A956 http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-104-A956

It is believed that current and future SSL is based on LEDs and phosphors. Jeff Tsao and Jonathan Wierer, et al. challenge this common belief that the narrow spectral linewidth and the high capital cost of lasers makes them unsuited for general illumination purposes. They discuss the use of lasers for higher power and efficiency at high current densities for SSL and experimentally demonstrate that four-color (RYGB) laser white illuminant is virtually indistinguishable from high quality state-of-the-art white reference illuminants. This result suggests that lasers can also be a serious contender for solid-state lighting in some applications. pp. A982 http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-104-A982

In order to improve extraction efficiency, hence external quantum efficiency, of LED devices, photons generated in the active region should escape out of the naturally formed slab waveguide structure formed by the LEDs' epitaxial layers. A paper by Seong-Ju Park, et al. demonstrates that tungsten metal can be used not only as a mask for epitaxial lateral overgrowth but also for the formation of an air void underneath it to improve both internal quantum efficiency and extraction efficiency of the LEDs. Whereas several similar approaches have been demonstrated, this study is unique in the formation of an air void as an optical scatterer without resorting to a complicated etching process. pp. A943 http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-104-A943

For the improvement of internal quantum efficiency, C. C. Yang and Yean-Woei Kiang, et al. investigate surface plasmon coupling with radiating dipoles (electron-hole pairs) experimentally and theoretically. The team demonstrates improvement in the efficiency droop, a term commonly used by the LED community to refer to the reduction in emission efficiency with increasing injection current, as well as in internal quantum efficiency. They also numerically study the effects of coupling based on a coupling model between a radiating dipole and the localized surface plasmon induced by Ag nanoparticles. pp. A914 http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-104-A914

About Energy Express

As a special bi-monthly supplement to Optics Express, Energy Express is dedicated to rapidly communicating new developments in optics for sustainable energy. Energy Express will have original research side-by-side with review articles written by the world's leading experts in the science and engineering of light and its impact on sustainable energy development, the environment, and green technologies. For more information, see: http://www.OpticsInfoBase.org/EE.

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by the Optical Society and edited by C. Martijn de Sterke of the University of Sydney. Optics Express is an open-access journal and is available at no cost to readers online at http://www.OpticsInfoBase.org/OE.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

Lyndsay Basista | EurekAlert!
Further information:
http://www.osa.org

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent
25.09.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>