Energy efficiency technologies offer major savings

Achieving full deployment of these efficiency technologies will depend in part on pressures driving adoption, such as high energy prices or public policies designed to increase energy efficiency. Nearly 70 percent of electricity consumption in the United States occurs in buildings.

The energy savings from attaining full deployment of cost-effective, energy-efficient technologies in buildings alone could eliminate the need to add new electricity generation capacity through 2030, the report says. New power generation facilities would be needed only to address imbalances in regional energy supplies, replace obsolete facilities, or to introduce more environmentally friendly sources of electricity.

Many cost-effective efficiency investments in buildings are possible, the report says. For example, replacing appliances such as air conditioners, refrigerators, freezers, furnaces, and hot water heaters with more efficient models could reduce energy use by 30 percent. Opportunities for achieving substantial energy savings exist in the industrial and transportation sectors as well. For example, deployment of industrial energy efficiency technologies could reduce energy use in manufacturing 14 percent to 22 percent by 2020, relative to expected trends. Most of these savings would occur in the most energy-intensive industries, such as chemical manufacturing, petroleum refining, pulp and paper, iron and steel, and cement.

Although there is great potential, many barriers exist to widespread adoption of energy efficiency technologies, the report points out. The upfront costs can be high, which can deter investment despite the possibility of long-term cost savings. Volatile energy prices can cause buyers to delay purchasing more efficient technology due to a lack of confidence that they will see an adequate return on their investment. In addition, there is a shortage of readily available, trustworthy information for consumers hoping to learn about the relative performance and costs of energy-efficient technology alternatives. Investments in energy-efficient infrastructure are particularly important, as these can lock in patterns of energy use for decades. Therefore, taking advantage of windows of opportunity for infrastructure is crucial.

Overcoming these barriers will require significant public and private support, and sustained effort. Many energy efficiency initiatives have been successful, such as the U.S. Department of Energy and U.S. Environmental Protection Agency's Energy Star labeling program. Efforts undertaken by California and New York have yielded large energy savings for those states. These experiences provide valuable lessons for national, state, and local policymakers on enacting effective energy efficiency policies.

This is the final report in a series from the National Academies' America's Energy Future project, which was undertaken to stimulate and inform a constructive national dialogue about the nation's energy future.

The America's Energy Future project is sponsored by the U.S. Department of Energy, BP America, Dow Chemical Company Foundation, Fred Kavli and the Kavli Foundation, GE Energy, General Motors Corp., Intel Corp., and the W.M. Keck Foundation. Support was also provided by the National Academies through the following endowed funds created to perpetually support the work of the National Research Council: Thomas Lincoln Casey Fund, Arthur L. Day Fund, W.K. Kellogg Foundation Fund, George and Cynthia Mitchell Endowment for Sustainability Science, and the Frank Press Fund for Dissemination and Outreach. The National Academy of Sciences, National Academy of Engineering, Institute of Medicine, and National Research Council make up the National Academies. They are private, nonprofit institutions that provide science, technology, and health policy advice under a congressional charter. The Research Council is the principal operating agency of the National Academy of Sciences and the National Academy of Engineering. A panel roster follows.

Copies of REAL PROSPECTS FOR ENERGY EFFICIENCY IN THE UNITED STATES are available from the National Academies Press; tel. 202-334-3313 or 1-800-624-6242 or on the Internet at HTTP://WWW.NAP.EDU. Reporters may obtain a copy from the Office of News and Public Information (contacts listed above).

[ This news release and report are available at HTTP://NATIONAL-ACADEMIES.ORG ]

NATIONAL RESEARCH COUNCIL
Division on Earth and Life Studies
Division on Engineering and Physical Sciences
and
NATIONAL ACADEMY OF ENGINEERING
and
TRANSPORTATION RESEARCH BOARD
COMMITTEE ON AMERICA'S ENERGY FUTURE: ENERGY EFFICIENCY TECHNOLOGIES: OPPORTUNITIES, RISKS, AND TRADEOFFS
LESTER B. LAVE 1 (CHAIR)
Harry B. and James H. Higgins Professor of Economics, and
University Professor
Tepper School of Business
Carnegie Mellon University
Pittsburgh
MAXINE L. SAVITZ 2 (VICE CHAIR)
General Manager
Honeywell Inc. (retired)
Los Angeles
R. STEPHEN BERRY 3
James Franck Distinguished Service Professor Emeritus
Gordon Center for Integrative Studies
Department of Chemistry and James Franck Institute
The University of Chicago
Chicago
MARILYN A. BROWN
Professor of Energy Policy
School of Public Policy
Georgia Institute of Technology
Atlanta
LINDA R. COHEN
Professor
Department of Economics
University of California
Irvine
MAGNUS G. CRAFORD 2
Chief Technology Officer
LumiLeds Lighting
San Jose, Calif.
PAUL A. DECOTIS
Vice President of Power Markets
Long Island Power Authority
Albany, NY
JAMES DEGRAFFENREIDT, JR.
Chairman of the Board and Chief Executive Officer
WGL Holdings, Inc.
Washington, D.C.
HOWARD GELLER
Executive Director
Southwest Energy Efficiency Project
Boulder, Colo.
DAVID B. GOLDSTEIN
Energy Program Director
Natural Resources Defense Council
San Francisco
ALEXANDER MACLACHLAN 2
Senior Vice President
Research and Development
E.I. du Pont de Nemours & Co. (retired)
Wilmington, Del.
WILLIAM F. POWERS 2
Vice President of Research
Ford Motor Company (retired)
Ann Arbor, Mich.
ARTHUR H. ROSENFELD
Commissioner
California Energy Commission
Sacramento, Calif.
DANIEL SPERLING
Professor of Civil Engineering and Environmental Science, and
Director
Center of Transporation Studies
University of California
Davis
RESEARCH COUNCIL STAFF
MADELINE WOODRUFF
Study Director
1 Member, Institute of Medicine
2 Member, National Academy of Engineering
3Member, National Academy of Sciences

Media Contact

Rebecca Alvania EurekAlert!

More Information:

http://www.nas.edu

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors