Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy efficiency technologies offer major savings

10.12.2009
Energy efficiency technologies that exist today or that are likely to be developed in the near future could save considerable money as well as energy, says a new report from the National Research Council. Fully adopting these technologies could lower projected U.S. energy use 17 percent to 20 percent by 2020, and 25 percent to 31 percent by 2030.

Achieving full deployment of these efficiency technologies will depend in part on pressures driving adoption, such as high energy prices or public policies designed to increase energy efficiency. Nearly 70 percent of electricity consumption in the United States occurs in buildings.

The energy savings from attaining full deployment of cost-effective, energy-efficient technologies in buildings alone could eliminate the need to add new electricity generation capacity through 2030, the report says. New power generation facilities would be needed only to address imbalances in regional energy supplies, replace obsolete facilities, or to introduce more environmentally friendly sources of electricity.

Many cost-effective efficiency investments in buildings are possible, the report says. For example, replacing appliances such as air conditioners, refrigerators, freezers, furnaces, and hot water heaters with more efficient models could reduce energy use by 30 percent. Opportunities for achieving substantial energy savings exist in the industrial and transportation sectors as well. For example, deployment of industrial energy efficiency technologies could reduce energy use in manufacturing 14 percent to 22 percent by 2020, relative to expected trends. Most of these savings would occur in the most energy-intensive industries, such as chemical manufacturing, petroleum refining, pulp and paper, iron and steel, and cement.

Although there is great potential, many barriers exist to widespread adoption of energy efficiency technologies, the report points out. The upfront costs can be high, which can deter investment despite the possibility of long-term cost savings. Volatile energy prices can cause buyers to delay purchasing more efficient technology due to a lack of confidence that they will see an adequate return on their investment. In addition, there is a shortage of readily available, trustworthy information for consumers hoping to learn about the relative performance and costs of energy-efficient technology alternatives. Investments in energy-efficient infrastructure are particularly important, as these can lock in patterns of energy use for decades. Therefore, taking advantage of windows of opportunity for infrastructure is crucial.

Overcoming these barriers will require significant public and private support, and sustained effort. Many energy efficiency initiatives have been successful, such as the U.S. Department of Energy and U.S. Environmental Protection Agency's Energy Star labeling program. Efforts undertaken by California and New York have yielded large energy savings for those states. These experiences provide valuable lessons for national, state, and local policymakers on enacting effective energy efficiency policies.

This is the final report in a series from the National Academies' America's Energy Future project, which was undertaken to stimulate and inform a constructive national dialogue about the nation's energy future.

The America's Energy Future project is sponsored by the U.S. Department of Energy, BP America, Dow Chemical Company Foundation, Fred Kavli and the Kavli Foundation, GE Energy, General Motors Corp., Intel Corp., and the W.M. Keck Foundation. Support was also provided by the National Academies through the following endowed funds created to perpetually support the work of the National Research Council: Thomas Lincoln Casey Fund, Arthur L. Day Fund, W.K. Kellogg Foundation Fund, George and Cynthia Mitchell Endowment for Sustainability Science, and the Frank Press Fund for Dissemination and Outreach. The National Academy of Sciences, National Academy of Engineering, Institute of Medicine, and National Research Council make up the National Academies. They are private, nonprofit institutions that provide science, technology, and health policy advice under a congressional charter. The Research Council is the principal operating agency of the National Academy of Sciences and the National Academy of Engineering. A panel roster follows.

Copies of REAL PROSPECTS FOR ENERGY EFFICIENCY IN THE UNITED STATES are available from the National Academies Press; tel. 202-334-3313 or 1-800-624-6242 or on the Internet at HTTP://WWW.NAP.EDU. Reporters may obtain a copy from the Office of News and Public Information (contacts listed above).

[ This news release and report are available at HTTP://NATIONAL-ACADEMIES.ORG ]

NATIONAL RESEARCH COUNCIL
Division on Earth and Life Studies
Division on Engineering and Physical Sciences
and
NATIONAL ACADEMY OF ENGINEERING
and
TRANSPORTATION RESEARCH BOARD
COMMITTEE ON AMERICA'S ENERGY FUTURE: ENERGY EFFICIENCY TECHNOLOGIES: OPPORTUNITIES, RISKS, AND TRADEOFFS
LESTER B. LAVE 1 (CHAIR)
Harry B. and James H. Higgins Professor of Economics, and
University Professor
Tepper School of Business
Carnegie Mellon University
Pittsburgh
MAXINE L. SAVITZ 2 (VICE CHAIR)
General Manager
Honeywell Inc. (retired)
Los Angeles
R. STEPHEN BERRY 3
James Franck Distinguished Service Professor Emeritus
Gordon Center for Integrative Studies
Department of Chemistry and James Franck Institute
The University of Chicago
Chicago
MARILYN A. BROWN
Professor of Energy Policy
School of Public Policy
Georgia Institute of Technology
Atlanta
LINDA R. COHEN
Professor
Department of Economics
University of California
Irvine
MAGNUS G. CRAFORD 2
Chief Technology Officer
LumiLeds Lighting
San Jose, Calif.
PAUL A. DECOTIS
Vice President of Power Markets
Long Island Power Authority
Albany, NY
JAMES DEGRAFFENREIDT, JR.
Chairman of the Board and Chief Executive Officer
WGL Holdings, Inc.
Washington, D.C.
HOWARD GELLER
Executive Director
Southwest Energy Efficiency Project
Boulder, Colo.
DAVID B. GOLDSTEIN
Energy Program Director
Natural Resources Defense Council
San Francisco
ALEXANDER MACLACHLAN 2
Senior Vice President
Research and Development
E.I. du Pont de Nemours & Co. (retired)
Wilmington, Del.
WILLIAM F. POWERS 2
Vice President of Research
Ford Motor Company (retired)
Ann Arbor, Mich.
ARTHUR H. ROSENFELD
Commissioner
California Energy Commission
Sacramento, Calif.
DANIEL SPERLING
Professor of Civil Engineering and Environmental Science, and
Director
Center of Transporation Studies
University of California
Davis
RESEARCH COUNCIL STAFF
MADELINE WOODRUFF
Study Director
1 Member, Institute of Medicine
2 Member, National Academy of Engineering
3Member, National Academy of Sciences

Rebecca Alvania | EurekAlert!
Further information:
http://www.nas.edu

More articles from Power and Electrical Engineering:

nachricht Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated
25.04.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Silicon as a new storage material for the batteries of the future
25.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>