Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy efficiency technologies offer major savings

10.12.2009
Energy efficiency technologies that exist today or that are likely to be developed in the near future could save considerable money as well as energy, says a new report from the National Research Council. Fully adopting these technologies could lower projected U.S. energy use 17 percent to 20 percent by 2020, and 25 percent to 31 percent by 2030.

Achieving full deployment of these efficiency technologies will depend in part on pressures driving adoption, such as high energy prices or public policies designed to increase energy efficiency. Nearly 70 percent of electricity consumption in the United States occurs in buildings.

The energy savings from attaining full deployment of cost-effective, energy-efficient technologies in buildings alone could eliminate the need to add new electricity generation capacity through 2030, the report says. New power generation facilities would be needed only to address imbalances in regional energy supplies, replace obsolete facilities, or to introduce more environmentally friendly sources of electricity.

Many cost-effective efficiency investments in buildings are possible, the report says. For example, replacing appliances such as air conditioners, refrigerators, freezers, furnaces, and hot water heaters with more efficient models could reduce energy use by 30 percent. Opportunities for achieving substantial energy savings exist in the industrial and transportation sectors as well. For example, deployment of industrial energy efficiency technologies could reduce energy use in manufacturing 14 percent to 22 percent by 2020, relative to expected trends. Most of these savings would occur in the most energy-intensive industries, such as chemical manufacturing, petroleum refining, pulp and paper, iron and steel, and cement.

Although there is great potential, many barriers exist to widespread adoption of energy efficiency technologies, the report points out. The upfront costs can be high, which can deter investment despite the possibility of long-term cost savings. Volatile energy prices can cause buyers to delay purchasing more efficient technology due to a lack of confidence that they will see an adequate return on their investment. In addition, there is a shortage of readily available, trustworthy information for consumers hoping to learn about the relative performance and costs of energy-efficient technology alternatives. Investments in energy-efficient infrastructure are particularly important, as these can lock in patterns of energy use for decades. Therefore, taking advantage of windows of opportunity for infrastructure is crucial.

Overcoming these barriers will require significant public and private support, and sustained effort. Many energy efficiency initiatives have been successful, such as the U.S. Department of Energy and U.S. Environmental Protection Agency's Energy Star labeling program. Efforts undertaken by California and New York have yielded large energy savings for those states. These experiences provide valuable lessons for national, state, and local policymakers on enacting effective energy efficiency policies.

This is the final report in a series from the National Academies' America's Energy Future project, which was undertaken to stimulate and inform a constructive national dialogue about the nation's energy future.

The America's Energy Future project is sponsored by the U.S. Department of Energy, BP America, Dow Chemical Company Foundation, Fred Kavli and the Kavli Foundation, GE Energy, General Motors Corp., Intel Corp., and the W.M. Keck Foundation. Support was also provided by the National Academies through the following endowed funds created to perpetually support the work of the National Research Council: Thomas Lincoln Casey Fund, Arthur L. Day Fund, W.K. Kellogg Foundation Fund, George and Cynthia Mitchell Endowment for Sustainability Science, and the Frank Press Fund for Dissemination and Outreach. The National Academy of Sciences, National Academy of Engineering, Institute of Medicine, and National Research Council make up the National Academies. They are private, nonprofit institutions that provide science, technology, and health policy advice under a congressional charter. The Research Council is the principal operating agency of the National Academy of Sciences and the National Academy of Engineering. A panel roster follows.

Copies of REAL PROSPECTS FOR ENERGY EFFICIENCY IN THE UNITED STATES are available from the National Academies Press; tel. 202-334-3313 or 1-800-624-6242 or on the Internet at HTTP://WWW.NAP.EDU. Reporters may obtain a copy from the Office of News and Public Information (contacts listed above).

[ This news release and report are available at HTTP://NATIONAL-ACADEMIES.ORG ]

NATIONAL RESEARCH COUNCIL
Division on Earth and Life Studies
Division on Engineering and Physical Sciences
and
NATIONAL ACADEMY OF ENGINEERING
and
TRANSPORTATION RESEARCH BOARD
COMMITTEE ON AMERICA'S ENERGY FUTURE: ENERGY EFFICIENCY TECHNOLOGIES: OPPORTUNITIES, RISKS, AND TRADEOFFS
LESTER B. LAVE 1 (CHAIR)
Harry B. and James H. Higgins Professor of Economics, and
University Professor
Tepper School of Business
Carnegie Mellon University
Pittsburgh
MAXINE L. SAVITZ 2 (VICE CHAIR)
General Manager
Honeywell Inc. (retired)
Los Angeles
R. STEPHEN BERRY 3
James Franck Distinguished Service Professor Emeritus
Gordon Center for Integrative Studies
Department of Chemistry and James Franck Institute
The University of Chicago
Chicago
MARILYN A. BROWN
Professor of Energy Policy
School of Public Policy
Georgia Institute of Technology
Atlanta
LINDA R. COHEN
Professor
Department of Economics
University of California
Irvine
MAGNUS G. CRAFORD 2
Chief Technology Officer
LumiLeds Lighting
San Jose, Calif.
PAUL A. DECOTIS
Vice President of Power Markets
Long Island Power Authority
Albany, NY
JAMES DEGRAFFENREIDT, JR.
Chairman of the Board and Chief Executive Officer
WGL Holdings, Inc.
Washington, D.C.
HOWARD GELLER
Executive Director
Southwest Energy Efficiency Project
Boulder, Colo.
DAVID B. GOLDSTEIN
Energy Program Director
Natural Resources Defense Council
San Francisco
ALEXANDER MACLACHLAN 2
Senior Vice President
Research and Development
E.I. du Pont de Nemours & Co. (retired)
Wilmington, Del.
WILLIAM F. POWERS 2
Vice President of Research
Ford Motor Company (retired)
Ann Arbor, Mich.
ARTHUR H. ROSENFELD
Commissioner
California Energy Commission
Sacramento, Calif.
DANIEL SPERLING
Professor of Civil Engineering and Environmental Science, and
Director
Center of Transporation Studies
University of California
Davis
RESEARCH COUNCIL STAFF
MADELINE WOODRUFF
Study Director
1 Member, Institute of Medicine
2 Member, National Academy of Engineering
3Member, National Academy of Sciences

Rebecca Alvania | EurekAlert!
Further information:
http://www.nas.edu

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>