Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-dense biofuel from cellulose close to being economical

05.06.2012
A new Purdue University-developed process for creating biofuels has shown potential to be cost-effective for production scale, opening the door for moving beyond the laboratory setting.
A Purdue economic analysis shows that the cost of the thermo-chemical H2Bioil method is competitive when crude oil is about $100 per barrel when using certain energy methods to create hydrogen needed for the process. If a federal carbon tax were implemented, the biofuel would become even more economical.

H2Bioil is created when biomass, such as switchgrass or corn stover, is heated rapidly to about 500 degrees Celcius in the presence of pressurized hydrogen. Resulting gases are passed over catalysts, causing reactions that separate oxygen from carbon molecules, making the carbon molecules high in energy content, similar to gasoline molecules.

The conversion process was created in the lab of Rakesh Agrawal, Purdue's Winthrop E. Stone Distinguished Professor of Chemical Engineering. He said H2Bioil has significant advantages over traditional standalone methods used to create fuels from biomass.

"The process is quite fast and converts entire biomass to liquid fuel," Agrawal said. "As a result, the yields are substantially higher. Once the process is fully developed, due to the use of external hydrogen, the yield is expected to be two to three times that of the current competing technologies."

The economic analysis, published in the June issue of Biomass Conversion and Biorefinery, shows that the energy source used to create hydrogen for the process makes all the difference when determining whether the biofuel is cost-effective. Hydrogen processed using natural gas or coal makes the H2Bioil cost-effective when crude oil is just over $100 per barrel. But hydrogen derived from other, more expensive, energy sources - nuclear, wind or solar - drive up the break-even point.

"We're in the ballpark," said Wally Tyner, Purdue's James and Lois Ackerman Professor of Agricultural Economics. "In the past, I have said that for biofuels to be competitive, crude prices would need to be at about $120 per barrel. This process looks like it could be competitive when crude is even a little cheaper than that."

Agrawal said he and colleagues Fabio Ribeiro, a Purdue professor of chemical engineering, and Nick Delgass, Purdue's Maxine Spencer Nichols Professor of Chemical Engineering, are working to develop catalysts needed for the H2Bioil conversion processes. The method's initial implementation has worked on a laboratory scale and is being refined so it would become effective on a commercial scale.

"This economic analysis shows us that the process is viable on a commercial scale," Agrawal said. "We can now go back to the lab and focus on refining and improving the process with confidence."

The model Tyner used assumed that corn stover, switchgrass and miscanthus would be the primary feedstocks. The analysis also found that if a federal carbon tax were introduced, driving up the cost of coal and natural gas, more expensive methods for producing hydrogen would become competitive.

"If we had a carbon tax in the future, the break-even prices would be competitive even for nuclear," Tyner said. "Wind and solar, not yet, but maybe down the road."

The U.S. Department of Energy and the Air Force Office of Scientific Research funded the research. Agrawal and his collaborators received a U.S. patent for the conversion process.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Wally Tyner, 765-494-0199, wtyner@purdue.edu
Rakesh Agrawal, 765-494-2257, agrawalr@purdue.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Heavy metals in water meet their match
28.07.2017 | Swansea University

nachricht Did you know that infrared heat and UV light contribute to the success of your barbecue?
27.07.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>