Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-dense biofuel from cellulose close to being economical

05.06.2012
A new Purdue University-developed process for creating biofuels has shown potential to be cost-effective for production scale, opening the door for moving beyond the laboratory setting.
A Purdue economic analysis shows that the cost of the thermo-chemical H2Bioil method is competitive when crude oil is about $100 per barrel when using certain energy methods to create hydrogen needed for the process. If a federal carbon tax were implemented, the biofuel would become even more economical.

H2Bioil is created when biomass, such as switchgrass or corn stover, is heated rapidly to about 500 degrees Celcius in the presence of pressurized hydrogen. Resulting gases are passed over catalysts, causing reactions that separate oxygen from carbon molecules, making the carbon molecules high in energy content, similar to gasoline molecules.

The conversion process was created in the lab of Rakesh Agrawal, Purdue's Winthrop E. Stone Distinguished Professor of Chemical Engineering. He said H2Bioil has significant advantages over traditional standalone methods used to create fuels from biomass.

"The process is quite fast and converts entire biomass to liquid fuel," Agrawal said. "As a result, the yields are substantially higher. Once the process is fully developed, due to the use of external hydrogen, the yield is expected to be two to three times that of the current competing technologies."

The economic analysis, published in the June issue of Biomass Conversion and Biorefinery, shows that the energy source used to create hydrogen for the process makes all the difference when determining whether the biofuel is cost-effective. Hydrogen processed using natural gas or coal makes the H2Bioil cost-effective when crude oil is just over $100 per barrel. But hydrogen derived from other, more expensive, energy sources - nuclear, wind or solar - drive up the break-even point.

"We're in the ballpark," said Wally Tyner, Purdue's James and Lois Ackerman Professor of Agricultural Economics. "In the past, I have said that for biofuels to be competitive, crude prices would need to be at about $120 per barrel. This process looks like it could be competitive when crude is even a little cheaper than that."

Agrawal said he and colleagues Fabio Ribeiro, a Purdue professor of chemical engineering, and Nick Delgass, Purdue's Maxine Spencer Nichols Professor of Chemical Engineering, are working to develop catalysts needed for the H2Bioil conversion processes. The method's initial implementation has worked on a laboratory scale and is being refined so it would become effective on a commercial scale.

"This economic analysis shows us that the process is viable on a commercial scale," Agrawal said. "We can now go back to the lab and focus on refining and improving the process with confidence."

The model Tyner used assumed that corn stover, switchgrass and miscanthus would be the primary feedstocks. The analysis also found that if a federal carbon tax were introduced, driving up the cost of coal and natural gas, more expensive methods for producing hydrogen would become competitive.

"If we had a carbon tax in the future, the break-even prices would be competitive even for nuclear," Tyner said. "Wind and solar, not yet, but maybe down the road."

The U.S. Department of Energy and the Air Force Office of Scientific Research funded the research. Agrawal and his collaborators received a U.S. patent for the conversion process.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Wally Tyner, 765-494-0199, wtyner@purdue.edu
Rakesh Agrawal, 765-494-2257, agrawalr@purdue.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>