Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-dense biofuel from cellulose close to being economical

05.06.2012
A new Purdue University-developed process for creating biofuels has shown potential to be cost-effective for production scale, opening the door for moving beyond the laboratory setting.
A Purdue economic analysis shows that the cost of the thermo-chemical H2Bioil method is competitive when crude oil is about $100 per barrel when using certain energy methods to create hydrogen needed for the process. If a federal carbon tax were implemented, the biofuel would become even more economical.

H2Bioil is created when biomass, such as switchgrass or corn stover, is heated rapidly to about 500 degrees Celcius in the presence of pressurized hydrogen. Resulting gases are passed over catalysts, causing reactions that separate oxygen from carbon molecules, making the carbon molecules high in energy content, similar to gasoline molecules.

The conversion process was created in the lab of Rakesh Agrawal, Purdue's Winthrop E. Stone Distinguished Professor of Chemical Engineering. He said H2Bioil has significant advantages over traditional standalone methods used to create fuels from biomass.

"The process is quite fast and converts entire biomass to liquid fuel," Agrawal said. "As a result, the yields are substantially higher. Once the process is fully developed, due to the use of external hydrogen, the yield is expected to be two to three times that of the current competing technologies."

The economic analysis, published in the June issue of Biomass Conversion and Biorefinery, shows that the energy source used to create hydrogen for the process makes all the difference when determining whether the biofuel is cost-effective. Hydrogen processed using natural gas or coal makes the H2Bioil cost-effective when crude oil is just over $100 per barrel. But hydrogen derived from other, more expensive, energy sources - nuclear, wind or solar - drive up the break-even point.

"We're in the ballpark," said Wally Tyner, Purdue's James and Lois Ackerman Professor of Agricultural Economics. "In the past, I have said that for biofuels to be competitive, crude prices would need to be at about $120 per barrel. This process looks like it could be competitive when crude is even a little cheaper than that."

Agrawal said he and colleagues Fabio Ribeiro, a Purdue professor of chemical engineering, and Nick Delgass, Purdue's Maxine Spencer Nichols Professor of Chemical Engineering, are working to develop catalysts needed for the H2Bioil conversion processes. The method's initial implementation has worked on a laboratory scale and is being refined so it would become effective on a commercial scale.

"This economic analysis shows us that the process is viable on a commercial scale," Agrawal said. "We can now go back to the lab and focus on refining and improving the process with confidence."

The model Tyner used assumed that corn stover, switchgrass and miscanthus would be the primary feedstocks. The analysis also found that if a federal carbon tax were introduced, driving up the cost of coal and natural gas, more expensive methods for producing hydrogen would become competitive.

"If we had a carbon tax in the future, the break-even prices would be competitive even for nuclear," Tyner said. "Wind and solar, not yet, but maybe down the road."

The U.S. Department of Energy and the Air Force Office of Scientific Research funded the research. Agrawal and his collaborators received a U.S. patent for the conversion process.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Wally Tyner, 765-494-0199, wtyner@purdue.edu
Rakesh Agrawal, 765-494-2257, agrawalr@purdue.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated
25.04.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Silicon as a new storage material for the batteries of the future
25.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated

25.04.2018 | Power and Electrical Engineering

Electrode shape improves neurostimulation for small targets

25.04.2018 | Medical Engineering

Silicon as a new storage material for the batteries of the future

25.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>