Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-autonomous sensors in logistics: continuous control of perishable goods

10.05.2010
For over 20 years, Fraunhofer IPM has been researching in the field of gas and fluid measurement techniques.

Semiconductor sensors, spectrometers as well as components from the Institute are used in the automobile industry, environmental analysis, building technology, safety technology or medicine technology – tailored, robust and energy-efficient. Current developments in gas sensors and thermoelectrics can be found on the Sensor+Test 2010 in Hall 12, stand 202.

The safety and quality in the food supply of today’s globally organized and networked supply chain is everything else than warranted. More than 50% of all foodstuffs are spoiled in the transport routes; alone in Great Britain this makes up 17 million tons and approximately 20 billion Euros. Intelligent measurement techniques – specifically applied – can sustainably save energy resources. Inside the Fraunhofer »Food Chain Management« Alliance, Fraunhofer IPM is developing different measurement systems for the online monitoring of foodstuffs. The use of gas chromatography in connection with metal oxide semiconductor sensors permits economical online control of processes in the food industry. A combination of gas chromatography and an optical ethylene measurement system monitors the quality of foodstuffs and safety for fruit, vegetables and also fresh meat. In a banana storage unit or container, the climatic technology can be efficiently controlled on the basis of the determination of the ethylene concentration, and this also applies to greenhouses.

Economic control of the transport routes of perishable goods

Since the start of last year, in collaboration with European partners in the »RFID Pro¬Active Cold Chain« project, the Fraunhofer IPM has been developing UHF-RFID tags with integrated sensoring in order to seamlessly document the transport routes of perishable goods such as medications, especially vaccines or foodstuffs. Moisture sensors also prevent rusted steering axes and help to save time and energy in this way. Temperature sensors are meant to sense the surroundings quickly and without contact, and thus control the climate technology in an as energy-efficient manner as possible. For instance, they raise the alarm as soon as the cooling chain is interrupted.

Clean air: Imission monitoring

Fraunhofer IPM is also active in imission monitoring. Besides optical systems for determining methane, the gas measurement system includes electrochemical elements for detecting ozone and CO; as well as semiconductor sensors, and temperature and moisture sensors. The aim is to create a mobile dynamic environmental cadastre for recognizing pollutant concentrations and counteracting them. With the aid of this complete measurement system, an important contribution is made towards achieving climatic protection goals and implementing the Air Pollution Regulation.

At the Sensor+Test 2010, Fraunhofer IPM is exhibiting sensing RFIDs, compact gas measurement systems, e.g. for ethylene, or gas sensor arrays for detection of gases and gas mixtures, as well as a gas-sensitive metal-oxide thin-film transistor. Interested parties can also inform themselves on measurement systems: a light source for infra-red spectroscopy, multi-reflection cells and fast modulating IR emitters for the 5 ìm to 12 ìm wavelength range.

Future technology thermoelectrics: energy-autonomous systems use waste heat.

More than 60% of the overall used fossil primary energy is wasted as unused heat energy according to a study of the Lawrence Livermore National Laboratory. Thermoelectric generators are able to utilize the energy portion of lost heat – at least partially – for instance, in firing plants in industrial processes, and especially in the automobile, and convert it into electric current. That this works is shown in thermoelectric generators in space where they have been used for decades as extremely reliable suppliers of energy for probes and satellites – emission-free, silent and vibration-free. Fraunhofer IPM is demonstrating this with a Carrera track, at which visitors can take part in car races. The model racers are powered by thermoelectric generators of bismuth or lead telluride. Moreover, energy-autonomous radio sensors use waste heat and thus cover many applications. In the car they can help to save weight as heavy cables are superfluous. The sensors also aid with monitoring old buildings. They can simply be stuck to the walls where, for example, they measure the moisture. They are even applicable in the field of medicine. In this way, sportspersons can measure their pulse via a sensor system built into their T-shirts, or use hearing aids which obtain their power from body heat.

Background information:

Fraunhofer IPM:
The Fraunhofer Institute for Physical Measurement Techniques IPM has many years of experience in optical 2D and 3D Imaging Techniques. Fraunhofer IPM develops and builds optical sensor and imaging systems. These mostly laser-based systems combine optical, mechanical, electronic and software components to create perfect solutions of robust design that are individually tailored to suit the conditions at the site of deployment. In the field of thermoelectrics, the Institute has extensive know-how in materials research, simulation and systems. Fraunhofer IPM also specializes in thin-film technologies for application in the production of materials, manufacturing processes and systems. Yet another field of activity focuses on semi-conductor gas sensors.
Your contact:
Carolin Peter, Integrated Sensor Systems
Phone +49 761 8857-731
carolin.peter@ipm.fraunhofer.de
Dr. Dirk Ebling, Thermoelectrics
Phone +49 761 8857-399
dirk.ebling@ipm.fraunhofer.de

Holger Kock | Fraunhofer-Gesellschaft
Further information:
http://www.ipm.fraunhofer.de/fhg/ipm_en/index.jsp

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>