Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronics: Graphene makes a magnetic switch

18.07.2013
Tiny nanoribbons of carbon could be used to make a magnetic field sensor for novel electronic devices

Researchers in Singapore have designed an electronic switch that responds to changes in a magnetic field. The device relies on graphene, a strong and flexible electricity-conducting layer of carbon atoms arranged in a honeycomb pattern.

Seng Ghee Tan of the A*STAR Data Storage Institute, along with colleagues at the National University of Singapore, used theoretical models to predict the properties of their proposed device, known as a magnetic field-effect transistor.

The transistor is based on two nanoribbons of graphene, each just a few tens of nanometers wide, which are joined end to end. The atoms along the edges of these nanoribbons are arranged in an ‘armchair’ configuration — a pattern that resembles the indented battlements of castle walls. If these edges were in a zigzag pattern, however, the material would have different electrical properties.

One of the nanoribbons in the team’s transistor acts as a metallic conductor that allows electrons to flow freely; the other, slightly wider, nanoribbon is a semiconductor. Under normal conditions, electrons cannot travel from one nanoribbon to the other because their quantum wavefunctions — the probability of where electrons are found within the materials — do not overlap.

A magnetic field, however, warps the distribution of electrons, changing their wavefunctions until they overlap and allowing current to flow from one nanoribbon to the other. Using an external field to change the electrical resistance of a conductor in this way is known as a magnetoresistance effect.

The team calculated how electrons would travel in the nanoribbons under the influence of a 10-tesla magnetic field — the rough equivalent of that produced by a large superconducting magnet — at a range of different temperatures.

Tan and colleagues found that larger magnetic fields allowed more current to flow, and the effect was more pronounced at lower temperatures. At 150 kelvin, for example, the magnetic field induced a very large magnetoresistance effect and current flowed freely. At room temperature, the effect declined slightly but still allowed a considerable current. At 300 kelvin, the magnetoresistance effect was approximately half as strong.

The researchers also discovered that as the voltage across the nanoribbons increased, the electrons had enough energy to force their way through the switch and the magnetoresistance effect declined.

Other researchers recently produced graphene nanoribbons with atomically precise edges, similar to those in the proposed design. Tan and his colleagues suggest that if similar manufacturing techniques were used to build their device, its properties could come close to matching their theoretical predictions.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Journal information

Kumar, S. B., Jalil, M. B. A. & Tan, S. G. High magnetoresistance in graphene nanoribbon heterojunction. Applied Physics Letters 101, 183111 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6695
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>