Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel electronic biosensing technology could facilitate new era of personalized medicine

20.09.2010
The end of microplates?

The multi-welled microplate, long a standard tool in biomedical research and diagnostic laboratories, could become a thing of the past thanks to new electronic biosensing technology developed by a team of microelectronics engineers and biomedical scientists at the Georgia Institute of Technology.

Essentially arrays of tiny test tubes, microplates have been used for decades to simultaneously test multiple samples for their responses to chemicals, living organisms or antibodies. Fluorescence or color changes in labels associated with compounds on the plates can signal the presence of particular proteins or gene sequences.

The researchers hope to replace these microplates with modern microelectronics technology, including disposable arrays containing thousands of electronic sensors connected to powerful signal processing circuitry. If they're successful, this new electronic biosensing platform could help realize the dream of personalized medicine by making possible real-time disease diagnosis – potentially in a physician's office – and by helping select individualized therapeutic approaches.

"This technology could help facilitate a new era of personalized medicine," said John McDonald, chief research scientist at the Ovarian Cancer Institute in Atlanta and a professor in the Georgia Tech School of Biology. "A device like this could quickly detect in individuals the gene mutations that are indicative of cancer and then determine what would be the optimal treatment. There are a lot of potential applications for this that cannot be done with current analytical and diagnostic technology."

Fundamental to the new biosensing system is the ability to electronically detect markers that differentiate between healthy and diseased cells. These markers could be differences in proteins, mutations in DNA or even specific levels of ions that exist at different amounts in cancer cells. Researchers are finding more and more differences like these that could be exploited to create fast and inexpensive electronic detection techniques that don't rely on conventional labels.

"We have put together several novel pieces of nanoelectronics technology to create a method for doing things in a very different way than what we have been doing," said Muhannad Bakir, an associate professor in Georgia Tech's School of Electrical and Computer Engineering. "What we are creating is a new general-purpose sensing platform that takes advantage of the best of nanoelectronics and three-dimensional electronic system integration to modernize and add new applications to the old microplate application. This is a marriage of electronics and molecular biology."

The three-dimensional sensor arrays are fabricated using conventional low-cost, top-down microelectronics technology. Though existing sample preparation and loading systems may have to be modified, the new biosensor arrays should be compatible with existing work flows in research and diagnostic labs.

"We want to make these devices simple to manufacture by taking advantage of all the advances made in microelectronics, while at the same time not significantly changing usability for the clinician or researcher," said Ramasamy Ravindran, a graduate research assistant in Georgia Tech's Nanotechnology Research Center and the School of Electrical and Computer Engineering.

A key advantage of the platform is that sensing will be done using low-cost, disposable components, while information processing will be done by reusable conventional integrated circuits connected temporarily to the array. Ultra-high density spring-like mechanically compliant connectors and advanced "through-silicon vias" will make the electrical connections while allowing technicians to replace the biosensor arrays without damaging the underlying circuitry.

Separating the sensing and processing portions allows fabrication to be optimized for each type of device, notes Hyung Suk Yang, a graduate research assistant also working in the Nanotechnology Research Center. Without the separation, the types of materials and processes that can be used to fabricate the sensors are severely limited.

The sensitivity of the tiny electronic sensors can often be greater than current systems, potentially allowing diseases to be detected earlier. Because the sample wells will be substantially smaller than those of current microplates – allowing a smaller form factor – they could permit more testing to be done with a given sample volume.

The technology could also facilitate use of ligand-based sensing that recognizes specific genetic sequences in DNA or messenger RNA. "This would very quickly give us an indication of the proteins that are being expressed by that patient, which gives us knowledge of the disease state at the point-of-care," explained Ken Scarberry, a postdoctoral fellow in McDonald's lab.

So far, the researchers have demonstrated a biosensing system with silicon nanowire sensors in a 16-well device built on a one-centimeter by one-centimeter chip. The nanowires, just 50 by 70 nanometers, differentiated between ovarian cancer cells and healthy ovarian epithelial cells at a variety of cell densities.

Silicon nanowire sensor technology can be used to simultaneously detect large numbers of different cells and biomaterials without labels. Beyond that versatile technology, the biosensing platform could accommodate a broad range of other sensors – including technologies that may not exist yet. Ultimately, hundreds of thousands of different sensors could be included on each chip, enough to rapidly detect markers for a broad range of diseases.

"Our platform idea is really sensor agnostic," said Ravindran. "It could be used with a lot of different sensors that people are developing. It would give us an opportunity to bring together a lot of different kinds of sensors in a single chip."

Genetic mutations can lead to a large number of different disease states that can affect a patient's response to disease or medication, but current labeled sensing methods are limited in their ability to detect large numbers of different markers simultaneously.

Mapping single nucleotide polymorphisms (SNPs), variations that account for approximately 90 percent of human genetic variation, could be used to determine a patient's propensity for a disease, or their likelihood of benefitting from a particular intervention. The new biosensing technology could enable caregivers to produce and analyze SNP maps at the point-of-care.

Though many technical challenges remain, the ability to screen for thousands of disease markers in real-time has biomedical scientists like McDonald excited.

"With enough sensors in there, you could theoretically put all possible combinations on the array," he said. "This has not been considered possible until now because making an array large enough to detect them all with current technology is probably not feasible. But with microelectronics technology, you can easily include all the possible combinations, and that changes things."

Papers describing the biosensing device were presented at the Electronic Components and Technology Conference and the International Interconnect Technology conference in June 2010. The research has been supported in part by the National Nanotechnology Infrastructure Network (NNIN), Georgia Tech's Integrative BioSystems Institute (IBSI) and the Semiconductor Research Corporation.

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>