Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electron pairs precede high-temperature superconductivity

07.11.2008
New method exploring 'energy gap' shows electron pairs exist before superconductivity sets in

Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical current effortlessly when cooled below a certain temperature. These new imaging methods confirm that the electron pairs needed to carry current emerge above the transition temperature, before superconductivity sets in, but only in a particular direction.

"Our findings rule out certain explanations for the development of superconductivity in these materials, and lend support to other, competing theories," said Brookhaven physicist Peter Johnson, leader of the group whose work is described in the November 6, 2008, issue of Nature. Honing in on the mechanism for high-temperature (high-Tc) superconductivity may help scientists engineer new materials to make use of the current-carrying phenomenon in transformative applications such as high-efficiency transmission lines in the U.S. power grid.

Scientists already know that electrons in a superconducting material must pair up to carry the current. But whether these pairs form at or above the transition temperature has been a mystery, until now.

To search for pre-formed electron pairs, the Brookhaven team bombarded a copper-oxide material, held at temperatures above and below the transition temperature, with beams of light from the National Synchrotron Light Source, and analyzed the energy spectrum of electrons emitted from the sample. This method, known as angle-resolved photoemission spectroscopy (ARPES), ordinarily gives a clear picture of only half of the energy spectrum — all the levels electrons can occupy below the so-called Fermi level. To glimpse the other half, above the Fermi level, the scientists employed methods of analysis similar to those used by astronomers to increase the resolution of celestial images.

"If you look through a telescope with poor resolution, you'll see the moon, but the stars are lost," Johnson said. "But if you improve your resolution you see the stars and everything else. By improving our resolution we can use ARPES to see the few electrons that occasionally occupy levels above the Fermi level. We have devised ways to sharpen our images so we can look at the weak signals from above the Fermi level in finer and finer detail."

Seeing both sides of the Fermi level is important because, when a material becomes a superconductor, there is an energy gap surrounding the Fermi level. A perfectly symmetrical gap — equally spaced above and below the Fermi level — is a strong indication that electrons are paired up. That superconducting gap exists at and below the transition temperature, as long as a material acts as a superconductor.

But Johnson's team and other scientists had previously observed a second gap, or pseudogap, in some high-Tc materials, well above the transition temperature. If this pseudogap exhibited the same symmetry around the Fermi level, Johnson reasoned, it would be definitive evidence of paired electrons above the transition temperature. Using their new image-enhancing techniques, Johnson's team demonstrated that the pseudogap does indeed exhibit this same symmetry.

"We can now say for certain that electrons are forming pairs above the transition temperature, before the material becomes a superconductor," Johnson said.

The scientists made another interesting observation: The pairing occurs only along certain directions in the crystalline lattice of atoms making up the material — only along the directions in which copper atoms are bonded with oxygen atoms.

Together, the existence of preformed electron pairs and their directional dependence should help clarify the picture of high-Tc superconductivity, Johnson said. For example, the findings rule out some theories to explain the high-Tc phenomenon (e.g. certain "spin density wave" and "charge density wave" derived theories). But the new findings are consistent with theories that consider the pre-superconducting state to be derived from a "Mott insulator," as well as theories in which " [http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=06-57] charge stripes," previously discovered at Brookhaven Lab, might play a role in electron pairing.

"It's still a very complicated picture and one of the great mysteries of modern science," Johnson said. "With something like 150 theorists working in the field, we have 150 theories of how these materials work. But as we develop new techniques, we are making progress narrowing down the mechanism."

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>