Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrochemical Capacitors for Water Desalination

22.01.2009
Recent advances in electrochemical capacitors for energy storage open new opportunities for water desalination devices with high energy efficiency.

Existing technologies for hard, brackish and sea water desalination are highly energy consuming even in the case of the best available technology nowadays, Reverse Osmosis. In addition to this problem, the construction of desalination plants requires intensive capital expenditures.


Capacitive Deionization is a technological alternative to Reverse Osmosis provided it is a non-membrane and low-pressure process, which are possibly the two main drawbacks of the Reverse Osmosis technology. The Capacitive Deionization concept is schematically represented in the Figure.

During the deionization cycle, an external electrical charge is applied on a pair of electrodes introduced in the feed water, this makes the ions dissolved in the water to migrate towards the electrode of opposite charge, where they are adsorbed. In the regeneration cycle, the electrical load of the electrodes is switched off, therefore adsorbed ions are released. If an electrical circuit is connected at this stage, an electrical current will be produced, just like in the discharge of a capacitor.

Early studies almost 40 years ago showed that Capacitive Deionization could be a feasible technology for low-cost water desalination, but by that time appropriate materials were not available yet. However, nowadays with the most recent advances in electrochemical capacitors, there are improved electrodes with performances good enough to bring the Capacitive Deionization systems from research laboratories to real life applications.

With this aim the company PROINGESA and the foundations IMDEA Energy and IMDEA Water have launched a research project to design a low-cost Capacitive Deionization device based on nanomaterials that have been developed for last generation electrochemical capacitors. This project is funded by the Spanish Ministry of Industry Tourism and Commerce with the Strategic Action on Energy and Climate Change of the National Plan of Research, Development and Innovation.

IMDEA | alfa
Further information:
http://www.imdea.org

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>