Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electrochemical Capacitors for Water Desalination

Recent advances in electrochemical capacitors for energy storage open new opportunities for water desalination devices with high energy efficiency.

Existing technologies for hard, brackish and sea water desalination are highly energy consuming even in the case of the best available technology nowadays, Reverse Osmosis. In addition to this problem, the construction of desalination plants requires intensive capital expenditures.

Capacitive Deionization is a technological alternative to Reverse Osmosis provided it is a non-membrane and low-pressure process, which are possibly the two main drawbacks of the Reverse Osmosis technology. The Capacitive Deionization concept is schematically represented in the Figure.

During the deionization cycle, an external electrical charge is applied on a pair of electrodes introduced in the feed water, this makes the ions dissolved in the water to migrate towards the electrode of opposite charge, where they are adsorbed. In the regeneration cycle, the electrical load of the electrodes is switched off, therefore adsorbed ions are released. If an electrical circuit is connected at this stage, an electrical current will be produced, just like in the discharge of a capacitor.

Early studies almost 40 years ago showed that Capacitive Deionization could be a feasible technology for low-cost water desalination, but by that time appropriate materials were not available yet. However, nowadays with the most recent advances in electrochemical capacitors, there are improved electrodes with performances good enough to bring the Capacitive Deionization systems from research laboratories to real life applications.

With this aim the company PROINGESA and the foundations IMDEA Energy and IMDEA Water have launched a research project to design a low-cost Capacitive Deionization device based on nanomaterials that have been developed for last generation electrochemical capacitors. This project is funded by the Spanish Ministry of Industry Tourism and Commerce with the Strategic Action on Energy and Climate Change of the National Plan of Research, Development and Innovation.

IMDEA | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht New method increases energy density in lithium batteries
24.10.2016 | Columbia University School of Engineering and Applied Science

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>