Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electricity systems can cope with large-scale wind power

25.02.2009
Research by TU Delft proves that Dutch power stations are able to cope at any time in the future with variations in demand for electricity and supply of wind power, as long as use is made of up-to-date wind forecasts. PhD candidate Bart Ummels also demonstrates that there is no need for energy storage facilities. Ummels will receive his PhD on this topic on Thursday 26 February.

Wind is variable and can only partially be predicted. The large-scale use of wind power in the electricity system is therefore tricky. PhD candidate Bart Ummels MSc. investigated the consequences of using a substantial amount of wind power within the Dutch electricity system. He used simulation models, such as those developed by Dutch transmission system operator TenneT, to pinpoint potential problems (and solutions).

His results indicate that wind power requires greater flexibility from existing power stations. Sometimes larger reserves are needed, but more frequently power stations will have to decrease production in order to make room for wind-generated power. It is therefore essential to continually recalculate the commitment of power stations using the latest wind forecasts. This reduces potential forecast errors and enables wind power to be integrated more efficiently.

Ummels looked at wind power up to 12 GW, 8 GW of which at sea, which is enough to meet about one third of the Netherlands' demand for electricity. Dutch power stations are able to cope at any time in the future with variations in demand for electricity and supply of wind power, as long as use is made of up-to-date, improved wind forecasts. It is TenneT's task to integrate large-scale wind power into the electricity grid. Lex Hartman, TenneT's Director of Corporate Development: "in a joint effort, TU Delft and TenneT further developed the simulation model that can be used to study the integration of large-scale wind power. The results show that in the Netherlands we can integrate between 4 GW and 10 GW into the grid without needing any additional measures.

Surpluses

Ummels: 'Instead of the common question 'What do we do when the wind isn't blowing?', the more relevant question is 'Where do we put all the electricity if it is very windy at night?'. This is because, for instance, a coal-fired power station cannot simply be turned off. One solution is provided by the international trade in electricity, because other countries often can use the surplus. Moreover, a broadening of the 'opening hours' of the international electricity market benefits wind power. At the moment, utilities determine one day ahead how much electricity they intend to purchase or sell abroad. Wind power can be better used if the time difference between the trade and the wind forecast is smaller.'

No energy storage

Ummels' research also demonstrates that energy storage is not required. The results indicate that the international electricity market is a promising and cheaper solution for the use of wind power.

Making power stations more flexible is also better than storage. The use of heating boilers, for instance, means that combined heat and power plants operate more flexibly, which can consequently free up capacity for wind power at night.

The use of wind power in the Dutch electricity system could lead to a reduction in production costs of EUR1.5 billion annually and a reduction in CO2 emissions of 19 million tons a year.

Ineke Boneschansker | EurekAlert!
Further information:
http://www.tudelft.nl

More articles from Power and Electrical Engineering:

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>