Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electricity from straw

04.02.2009
Researchers have developed the first-ever biogas plant to run purely on waste instead of edible raw materials – transforming waste into valuable material. The plant generates 30 percent more biogas than its predecessors. A fuel cell efficiently converts the gas into electricity.

“Corn belongs in the kitchen, not in biogas facilities” – objections like this can be heard more and more frequently. They are protesting against the fermentation of foodstuffs in biogas plants that generate electricity and heat.


One thing the opponents are afraid of is that generating electricity in this way will cause food prices to escalate. In collaboration with several small and medium-sized enterprises, research scientists at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden have developed the first-ever biogas plant that works entirely without edible raw materials.

“In our pilot plant, we exclusively use agricultural waste such as corn stalks – that is, the corn plants without the cobs. This allows us to generate 30 percent more biogas than in conventional facilities,” says IKTS head of department Dr. Michael Stelter. Until now, biogas plants have only been able to process a certain proportion of waste material, as this tends to be more difficult to convert into biogas than pure cereal crops or corn, for instance.

This is not the only advantage: The time for which the decomposing waste material, or silage, is stored in the plant can be reduced by 50 to 70 percent. Biomass is usually kept in the fermenter, building up biogas, for 80 days. Thanks to the right kind of pre-treatment, this only takes about 30 days in the new plant. “Corn stalks contain cellulose which cannot be directly fermented. But in our plant, the cellulose is broken down by enzymes before the silage ferments,” Stelter explains.

The researchers have also optimized the conversion of biogas into electricity. They divert the gas into a high-temperature fuel cell with an electrical efficiency of 40 to 55 percent. By comparison, the gas engine normally used for this purpose only achieves an average efficiency of 38 percent. What is more, the fuel cell operates at 850 degrees Celsius. The heat can be used directly for heating or fed into the district heating network. If the electrical and thermal efficiency are added up, the fuel cell has an overall efficiency of up to 85 percent.

The overall efficiency of the combustion engine is usually around 38 percent because its heat is very difficult to harness. The researchers have already built a pilot plant with an electricity output of 1.5 kilowatts, enough to cover the needs of a family home. The researchers will present the concept of the biogas plant at the Hannover-Messe on April 20 to 24 (Hall 13, Stand E20). In the next phases of the project, the scientists and their industrial partners plan to gradually scale up the biogas plant to two megawatts.

Dr. Michael Stelter | EurekAlert!
Further information:
http://www.ikts.fraunhofer.de

More articles from Power and Electrical Engineering:

nachricht Electrical fields drive nano-machines a 100,000 times faster than previous methods
19.01.2018 | Technische Universität München

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>