Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrical Engineers Build “No-Waste” Laser

10.02.2012
A team of University of California, San Diego researchers has built the smallest room-temperature nanolaser to date, as well as an even more startling device: a highly efficient, “thresholdless” laser that funnels all its photons into lasing, without any waste.

The two new lasers require very low power to operate, an important breakthrough since lasers usually require greater and greater “pump power” to begin lasing as they shrink to nano sizes. The small size and extremely low power of these nanolasers could make them very useful components for future optical circuits packed on to tiny computer chips, Mercedeh Khajavikhan and her UC San Diego Jacobs School of Engineering colleagues report in the Feb. 9 issue of the journal Nature.

They suggest that the thresholdless laser may also help researchers as they develop new metamaterials, artificially structured materials that are already being studied for applications from super-lenses that can be used to see individual viruses or DNA molecules to “cloaking” devices that bend light around an object to make it appear invisible.

All lasers require a certain amount of “pump power” from an outside source to begin emitting a coherent beam of light or “lasing,” explained Yeshaiahu (Shaya) Fainman, a professor in the Department of Electrical and Computer Engineering at UC San Diego and co-author of the new study. A laser’s threshold is the point where this coherent output is greater than any spontaneous emission produced.

The smaller a laser is, the greater the pump power needed to reach the point of lasing. To overcome this problem, the UC San Diego researchers developed a design for the new lasers that uses quantum electrodynamic effects in coaxial nanocavities to alleviate the threshold constraint. Like a coaxial cable hooked up to a television (only at a much smaller scale), the laser cavity consists of a metal rod enclosed by a ring of metal-coated, quantum wells of semiconductor material. Khajavikhan and the rest of the team built the thresholdless laser by modifying the geometry of this cavity.

The new design also allowed them to build the smallest room-temperature, continuous wave laser to date. The new room-temperature nanoscale coaxial laser is more than an order of magnitude smaller than their previous record smallest nanolaser published in Nature Photonics less than two years ago. The whole device is almost half a micron in diameter – by comparison, the period at the end of this sentence is nearly 600 microns wide.

These highly efficient lasers would be useful in augmenting future computing chips with optical communications, where the lasers are used to establish communication links between distant points on the chip. Only a small amount of pump power would be required to reach lasing, reducing the number of photons needed to transmit information, said Fainman.

The nanolaser designs appear to be scalable – meaning that they could be shrunk to even smaller sizes – an extremely important feature that makes it possible to harvest laser light from even smaller nanoscale structures, the researchers note. This feature eventually could make them useful for creating and analyzing metamaterials with structures smaller than the wavelength of light currently emitted by the lasers.

Fainman said other applications for the new lasers could include tiny biochemical sensors or high-resolution displays, but the researchers are still working out the theory behind how these tiny lasers operate. They would also like to find a way to pump the lasers electrically instead of optically.

Co-authors for the Nature study, “Thresholdless Nanoscale Coaxial Lasers,” include Mercedeh Khajavikhan, Aleksandar Simic, Michael Kats, Jin Hyoung Lee, Boris Slutsky, Amit Mizrahi, Vitaliy Lomakin, and Yeshaiahu Fainman in the Department of Electrical and Computer Engineering at the UC San Diego Jacobs School of Engineering. The nanolasers are fabricated at the university’s NANO3 facility. The research was funded by the Defense Advanced Research Projects Agency, the National Science Foundation, the NSF Center for Integrated Access Networks (CIAN), the Cymer Corporation and the U.S. Army Research Office.

Catherine Hockmuth | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>