Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrical Engineers Build “No-Waste” Laser

10.02.2012
A team of University of California, San Diego researchers has built the smallest room-temperature nanolaser to date, as well as an even more startling device: a highly efficient, “thresholdless” laser that funnels all its photons into lasing, without any waste.

The two new lasers require very low power to operate, an important breakthrough since lasers usually require greater and greater “pump power” to begin lasing as they shrink to nano sizes. The small size and extremely low power of these nanolasers could make them very useful components for future optical circuits packed on to tiny computer chips, Mercedeh Khajavikhan and her UC San Diego Jacobs School of Engineering colleagues report in the Feb. 9 issue of the journal Nature.

They suggest that the thresholdless laser may also help researchers as they develop new metamaterials, artificially structured materials that are already being studied for applications from super-lenses that can be used to see individual viruses or DNA molecules to “cloaking” devices that bend light around an object to make it appear invisible.

All lasers require a certain amount of “pump power” from an outside source to begin emitting a coherent beam of light or “lasing,” explained Yeshaiahu (Shaya) Fainman, a professor in the Department of Electrical and Computer Engineering at UC San Diego and co-author of the new study. A laser’s threshold is the point where this coherent output is greater than any spontaneous emission produced.

The smaller a laser is, the greater the pump power needed to reach the point of lasing. To overcome this problem, the UC San Diego researchers developed a design for the new lasers that uses quantum electrodynamic effects in coaxial nanocavities to alleviate the threshold constraint. Like a coaxial cable hooked up to a television (only at a much smaller scale), the laser cavity consists of a metal rod enclosed by a ring of metal-coated, quantum wells of semiconductor material. Khajavikhan and the rest of the team built the thresholdless laser by modifying the geometry of this cavity.

The new design also allowed them to build the smallest room-temperature, continuous wave laser to date. The new room-temperature nanoscale coaxial laser is more than an order of magnitude smaller than their previous record smallest nanolaser published in Nature Photonics less than two years ago. The whole device is almost half a micron in diameter – by comparison, the period at the end of this sentence is nearly 600 microns wide.

These highly efficient lasers would be useful in augmenting future computing chips with optical communications, where the lasers are used to establish communication links between distant points on the chip. Only a small amount of pump power would be required to reach lasing, reducing the number of photons needed to transmit information, said Fainman.

The nanolaser designs appear to be scalable – meaning that they could be shrunk to even smaller sizes – an extremely important feature that makes it possible to harvest laser light from even smaller nanoscale structures, the researchers note. This feature eventually could make them useful for creating and analyzing metamaterials with structures smaller than the wavelength of light currently emitted by the lasers.

Fainman said other applications for the new lasers could include tiny biochemical sensors or high-resolution displays, but the researchers are still working out the theory behind how these tiny lasers operate. They would also like to find a way to pump the lasers electrically instead of optically.

Co-authors for the Nature study, “Thresholdless Nanoscale Coaxial Lasers,” include Mercedeh Khajavikhan, Aleksandar Simic, Michael Kats, Jin Hyoung Lee, Boris Slutsky, Amit Mizrahi, Vitaliy Lomakin, and Yeshaiahu Fainman in the Department of Electrical and Computer Engineering at the UC San Diego Jacobs School of Engineering. The nanolasers are fabricated at the university’s NANO3 facility. The research was funded by the Defense Advanced Research Projects Agency, the National Science Foundation, the NSF Center for Integrated Access Networks (CIAN), the Cymer Corporation and the U.S. Army Research Office.

Catherine Hockmuth | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent
25.09.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>