Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electric vehicles: Recharging in private

04.08.2014

An electronic payment system developed at A*STAR will protect the privacy of customers recharging their electric vehicles.                    

Electric vehicles are becoming more popular due to their environmental credentials and relatively low running costs. However, most existing electric vehicles need to be recharged every 100 to 150 kilometers, with each recharge potentially exposing information related to a customer’s payment and location. Now, researchers at A*STAR have described a new system that would allow quick and easy money transfers at electric vehicle charging stations, without jeopardizing customer privacy.


Electric vehicles require frequent recharging, which presents challenges for privacy and data protection.

© Mihajlo Maricic/iStock/Thinkstock

“Cybersecurity is an important factor for payment systems, but it is often ignored by users or administrators until the system is being attacked,” says researcher Joseph Liu from the A*STAR Institute for Infocomm Research in Singapore[1]. “No one should have their daily habits or behavior traced without their consent.”

The recharging of electric vehicles presents unique challenges for privacy, not least because some cars with solar panels are able to sell electricity back to the grid, meaning payments flow in both directions. Without tight security, payment companies or hackers could monitor where and when cars are charged, gaining insight into people’s lifestyles that could be exploited for targeted spam marketing.

“Some popular electronic payment systems like credit cards do not provide any privacy, while other systems like prepaid cash cards may not be suitable for large payments, or are not insured against card loss,” says Liu. “Cash is anonymous, but requires expensive machines to keep cash stores secure from thieves.”

The new system developed by Liu and co-workers is based on an in-car unit that resembles a smartphone or tablet and, along with a range of security benefits, allows two-way anonymous payments for recharging. Users can instantly shut down their accounts and retrieve unused credit. Also, if their car is stolen they can revoke the location privacy to help police trace the car. In the event of a dispute between a user and a supplier, either party can submit the claims to an independent judging authority for investigation.

The researchers tested their system by simulating three different types of attack: a hacker trying to track the transactions of an honest user, a user trying to underpay for services, and a supplier trying to slander an honest user. The system proved robust against all three attacks.

The team has now implemented a prototype of their secure charging system. They will install the tamper-proof in-car units on a fleet of 100 new electric vehicles that will arrive in Singapore later this year, thanks to collaboration with the Chinese carmaker BYD Auto.

Reference

1. Au, M. H., Liu, J. K., Fang, J., Jiang, Z. L., Susilo, W., Zhou, J. A new payment system for enhancing location privacy of electric vehicles. IEEE Transactions on Vehicular Technology 63, 3–18 (2014).

Lee Swee Heng | Research SEA News
Further information:
http://www.research.a-star.edu.sg/research/7005
http://www.researchsea.com

Further reports about: A*STAR Electric Recharging cybersecurity electric vehicles privacy vehicles

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>