Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electric vehicles: Recharging in private

04.08.2014

An electronic payment system developed at A*STAR will protect the privacy of customers recharging their electric vehicles.                    

Electric vehicles are becoming more popular due to their environmental credentials and relatively low running costs. However, most existing electric vehicles need to be recharged every 100 to 150 kilometers, with each recharge potentially exposing information related to a customer’s payment and location. Now, researchers at A*STAR have described a new system that would allow quick and easy money transfers at electric vehicle charging stations, without jeopardizing customer privacy.


Electric vehicles require frequent recharging, which presents challenges for privacy and data protection.

© Mihajlo Maricic/iStock/Thinkstock

“Cybersecurity is an important factor for payment systems, but it is often ignored by users or administrators until the system is being attacked,” says researcher Joseph Liu from the A*STAR Institute for Infocomm Research in Singapore[1]. “No one should have their daily habits or behavior traced without their consent.”

The recharging of electric vehicles presents unique challenges for privacy, not least because some cars with solar panels are able to sell electricity back to the grid, meaning payments flow in both directions. Without tight security, payment companies or hackers could monitor where and when cars are charged, gaining insight into people’s lifestyles that could be exploited for targeted spam marketing.

“Some popular electronic payment systems like credit cards do not provide any privacy, while other systems like prepaid cash cards may not be suitable for large payments, or are not insured against card loss,” says Liu. “Cash is anonymous, but requires expensive machines to keep cash stores secure from thieves.”

The new system developed by Liu and co-workers is based on an in-car unit that resembles a smartphone or tablet and, along with a range of security benefits, allows two-way anonymous payments for recharging. Users can instantly shut down their accounts and retrieve unused credit. Also, if their car is stolen they can revoke the location privacy to help police trace the car. In the event of a dispute between a user and a supplier, either party can submit the claims to an independent judging authority for investigation.

The researchers tested their system by simulating three different types of attack: a hacker trying to track the transactions of an honest user, a user trying to underpay for services, and a supplier trying to slander an honest user. The system proved robust against all three attacks.

The team has now implemented a prototype of their secure charging system. They will install the tamper-proof in-car units on a fleet of 100 new electric vehicles that will arrive in Singapore later this year, thanks to collaboration with the Chinese carmaker BYD Auto.

Reference

1. Au, M. H., Liu, J. K., Fang, J., Jiang, Z. L., Susilo, W., Zhou, J. A new payment system for enhancing location privacy of electric vehicles. IEEE Transactions on Vehicular Technology 63, 3–18 (2014).

Lee Swee Heng | Research SEA News
Further information:
http://www.research.a-star.edu.sg/research/7005
http://www.researchsea.com

Further reports about: A*STAR Electric Recharging cybersecurity electric vehicles privacy vehicles

More articles from Power and Electrical Engineering:

nachricht Better combustion for power generation
31.05.2016 | DOE/Oak Ridge National Laboratory

nachricht Fast, stretchy circuits could yield new wave of wearable electronics
30.05.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attosecond camera for nanostructures

Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

The interaction between light and matter is of key importance in nature, the most prominent example being photosynthesis. Light-matter interactions have also...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Better combustion for power generation

31.05.2016 | Power and Electrical Engineering

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>