Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient production of feed for farm animals

19.08.2014

50% reduction in the energy consumption possible

Cost pressure in the market for meat and dairy products is increasing. This also raises manufacturers’ interest in lowering energy consumption for the production of feed for cattle, pigs, and poultry.


Most of the energy in the production of animal feed is applied for pressing pellets.

© Austing Mischfutterwerk GmbH & Co. KG

The BINE-Projektinfo brochure “Producing animal feed with less electricity and heat” (07/2014) presents the optimised production process for a compound feed plant.

A computer-aided control program allows the energy-efficient processing of different batches of natural raw materials into a compound feed with a specified ratio of fats, proteins, and trace elements.

Milling, mixing, pressing and pelletising are the central processes in the production of animal feed. Energy accounting of these processes marked the beginning of this research project.

In a next step, the scientists developed a measurement instrumentation that is integrated into the production process while continuously displaying the current quality data of the 12 to 18 feed ingredients used. A computer-aided and adaptive expert system gives real-time recommendations on process control.

While feed producers were previously solely dependent on the knowledge and experience of long-term employees, the new control program now acts as an assistant. With the now optimised processes, that part of the energy used as a measure of caution to ensure the expected product quality can now be saved.

This research project was conducted by researchers at the Institute for Integrated Product Development at the University of Bremen in collaboration with the company Austing Mischfutterwerk GmbH & Co. KG.

The BINE-projectinfobrochure, which can be obtained free of charge from the BINE Information Service at FIZ Karlsruhe, is available online at www.bine.info or by calling +49 (0)228 92379-0.

Press contact
Uwe Milles
presse(at)bine.info

About BINE Information Service

Energy research for practical applications

The BINE Information Service reports on energy research topics, such as new materials, systems and components, as well as innovative concepts and methods. The knowledge gained is incorporated into the implementation of new technologies in practice, because first-rate information provides a basis for pioneering decisions, whether in the planning of energy-optimised buildings, increasing the efficiency of industrial processes, or integrating renewable energy sources into existing systems.

About FIZ Karlsruhe

FIZ Karlsruhe – Leibniz Institute for Information Infrastructure is a not-for-profit organization with the public mission to make sci-tech information from all over the world publicly available and to provide related services in order to support the national and international transfer of knowledge and the promotion of innovation.
Our business areas:
• STN International – the world’s leading online service for research and patent information in science and technology
• KnowEsis – innovative eScience solutions to support the process of research in all its stages, and throughout all scientific disciplines
• Databases and Information Services – Databases and science portals in mathematics, computer science, crystallography, chemistry, and energy technology
FIZ Karlsruhe is a member of the Leibniz Association (WGL) which consists of 87 German research and infrastructure institutions.

Weitere Informationen:

http://www.bine.info/en/press/press-releases/press/pressemitteilung/futter-fuer-... - Download cover, press release and info-pdf
http://www.bine.info/en - BINE Informationsdienst english

Rüdiger Mack | idw - Informationsdienst Wissenschaft

Further reports about: BINE Efficient Energy FIZ Leibniz-Institut animals computer-aided feed materials processes technologies

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>