Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doubling down on energy efficiency

18.01.2013
Berkeley Lab research finds utility customer-funded energy efficiency programs expanding across the United States; Midwest and South on the rise

Spending on energy efficiency programs funded by electric and natural gas utility customers will double by 2025 to about $9.5 billion per year, according to projections published today by researchers at Lawrence Berkeley National Laboratory (Berkeley Lab).


This is one of the graphs from Berkeley Lab's new report showing projected utility customer funding for both gas and electric programs.

Credit: Lawrence Berkeley National Lab

These funds, which come from a charge on utility bills, historically constitute the nation's largest source of spending on programs to foster the adoption of more efficient products and buildings. According to the Berkeley Lab report, energy efficiency programs funded by utility customers are projected to continue expanding beyond the traditional bastions of energy efficiency in the Northeast and West.

By 2025, states in the Midwest and South could account for 49% of total U.S. spending on customer-funded energy efficiency programs, up from 27% in 2010. By 2025, only a handful of states would not have significant customer-funded efficiency programs.

The projected growth in program spending is driven by policies in a number of states requiring that utilities obtain all cost-effective energy efficiency savings. Another driver is energy efficiency resource standards, which require electric utilities to meet minimum energy savings goals each year.

"In addition, we see some utilities turning to energy efficiency as part of their strategy for reliable delivery of electricity as older coal-fired generators are retired," said staff scientist Charles A. Goldman, a co-author of the study and head of the laboratory's energy analysis and environmental impacts department.

For the analysis, the Berkeley Lab team developed low, medium, and high scenarios for program spending and savings, intended to reflect a range of potential outcomes under the current policy environment – that is, without considering possible major new policy developments. The analysis was based on a detailed review of all relevant state policies and legislation, regulatory filings and decisions, and utility integrated resource and demand-side management plans. The researchers refined the scenarios through extensive interviews with regional and national energy efficiency experts, efficiency program administrators, regulatory staff, and other industry actors.

Galen Barbose, the lead author of the report, explained that "this study is intended to provide a detailed, bottom-up analysis of state policies and to capture the market context in which programs operate."

Total U.S. spending on electric and gas efficiency programs (excluding load management programs) is projected to grow in all scenarios examined, ranging from $6.5 billion to $15.6 billion in 2025, with a mid-range projection of $9.5 billion under a scenario in which states are fairly successful in ramping up their programs to meet state energy-savings policies now on the books. This compares to total spending of $4.8 billion in 2010. As discussed within the report, the range in potential spending trajectories reflects a number of key challenges and significant uncertainties in market and policy drivers, including concerns about utility rate impacts from energy efficiency programs, the timing and pace of the economic recovery, the long-term trend in natural gas prices, and the impact of recent and possible future changes to federal and state minimum efficiency standards for appliances and building codes.

If states remain on their current policy paths, annual incremental savings from electric energy efficiency programs could be expected to reach about 0.8% of retail electricity sales in 2025, compared to about 0.5% of retail electricity sales in 2010.

Significantly, electricity savings at that level in 2025 could offset the majority of load growth forecasted through that year in the Energy Information Administration (EIA)'s most recent reference case forecast for electricity usage. This assumes that the EIA forecast correctly estimates savings from future customer-funded energy efficiency programs.

"So far, only a few very aggressive states have come close to offsetting growth in electricity needs through efficiency," Goldman said. "Our finding that, in aggregate, U.S. energy efficiency programs could offset a significant portion of projected load growth in the electricity sector over the next decade is subject to some uncertainties but striking nonetheless."

In the current policy and market environment, spending on gas energy efficiency programs is projected to continue its rise in the near term but flatten from 2015 onward, reflecting the influence of low natural gas prices and new state and federal equipment efficiency standards.

The report, entitled The Future of Utility Customer-Funded Energy Efficiency Programs in the United States: Projected Spending and Savings to 2025, was funded by the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability and can be downloaded at: http://emp.lbl.gov/sites/all/files/lbnl-5803e.pdf

A Powerpoint briefing summarizing key findings from the report can be downloaded at: http://emp.lbl.gov/sites/all/files/lbnl-5803e-brief.pdf

An abbreviated version of the report, excluding the technical appendix, appears this month in Energy Efficiency Journal. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s12053-012-9187-1

Staff contacts:

Galen Barbose (glbarbose@lbl.gov) (510) 495-2593

Chuck Goldman (cagoldman@lbl.gov) (510) 486-4637

Ian Hoffman (ihoffman@lbl.gov) (510) 495-2990

Megan Billingsley (mabillingsley@lbl.gov) (510) 495-2588

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

Allan Chen | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>