Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doubling down on energy efficiency

18.01.2013
Berkeley Lab research finds utility customer-funded energy efficiency programs expanding across the United States; Midwest and South on the rise

Spending on energy efficiency programs funded by electric and natural gas utility customers will double by 2025 to about $9.5 billion per year, according to projections published today by researchers at Lawrence Berkeley National Laboratory (Berkeley Lab).


This is one of the graphs from Berkeley Lab's new report showing projected utility customer funding for both gas and electric programs.

Credit: Lawrence Berkeley National Lab

These funds, which come from a charge on utility bills, historically constitute the nation's largest source of spending on programs to foster the adoption of more efficient products and buildings. According to the Berkeley Lab report, energy efficiency programs funded by utility customers are projected to continue expanding beyond the traditional bastions of energy efficiency in the Northeast and West.

By 2025, states in the Midwest and South could account for 49% of total U.S. spending on customer-funded energy efficiency programs, up from 27% in 2010. By 2025, only a handful of states would not have significant customer-funded efficiency programs.

The projected growth in program spending is driven by policies in a number of states requiring that utilities obtain all cost-effective energy efficiency savings. Another driver is energy efficiency resource standards, which require electric utilities to meet minimum energy savings goals each year.

"In addition, we see some utilities turning to energy efficiency as part of their strategy for reliable delivery of electricity as older coal-fired generators are retired," said staff scientist Charles A. Goldman, a co-author of the study and head of the laboratory's energy analysis and environmental impacts department.

For the analysis, the Berkeley Lab team developed low, medium, and high scenarios for program spending and savings, intended to reflect a range of potential outcomes under the current policy environment – that is, without considering possible major new policy developments. The analysis was based on a detailed review of all relevant state policies and legislation, regulatory filings and decisions, and utility integrated resource and demand-side management plans. The researchers refined the scenarios through extensive interviews with regional and national energy efficiency experts, efficiency program administrators, regulatory staff, and other industry actors.

Galen Barbose, the lead author of the report, explained that "this study is intended to provide a detailed, bottom-up analysis of state policies and to capture the market context in which programs operate."

Total U.S. spending on electric and gas efficiency programs (excluding load management programs) is projected to grow in all scenarios examined, ranging from $6.5 billion to $15.6 billion in 2025, with a mid-range projection of $9.5 billion under a scenario in which states are fairly successful in ramping up their programs to meet state energy-savings policies now on the books. This compares to total spending of $4.8 billion in 2010. As discussed within the report, the range in potential spending trajectories reflects a number of key challenges and significant uncertainties in market and policy drivers, including concerns about utility rate impacts from energy efficiency programs, the timing and pace of the economic recovery, the long-term trend in natural gas prices, and the impact of recent and possible future changes to federal and state minimum efficiency standards for appliances and building codes.

If states remain on their current policy paths, annual incremental savings from electric energy efficiency programs could be expected to reach about 0.8% of retail electricity sales in 2025, compared to about 0.5% of retail electricity sales in 2010.

Significantly, electricity savings at that level in 2025 could offset the majority of load growth forecasted through that year in the Energy Information Administration (EIA)'s most recent reference case forecast for electricity usage. This assumes that the EIA forecast correctly estimates savings from future customer-funded energy efficiency programs.

"So far, only a few very aggressive states have come close to offsetting growth in electricity needs through efficiency," Goldman said. "Our finding that, in aggregate, U.S. energy efficiency programs could offset a significant portion of projected load growth in the electricity sector over the next decade is subject to some uncertainties but striking nonetheless."

In the current policy and market environment, spending on gas energy efficiency programs is projected to continue its rise in the near term but flatten from 2015 onward, reflecting the influence of low natural gas prices and new state and federal equipment efficiency standards.

The report, entitled The Future of Utility Customer-Funded Energy Efficiency Programs in the United States: Projected Spending and Savings to 2025, was funded by the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability and can be downloaded at: http://emp.lbl.gov/sites/all/files/lbnl-5803e.pdf

A Powerpoint briefing summarizing key findings from the report can be downloaded at: http://emp.lbl.gov/sites/all/files/lbnl-5803e-brief.pdf

An abbreviated version of the report, excluding the technical appendix, appears this month in Energy Efficiency Journal. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s12053-012-9187-1

Staff contacts:

Galen Barbose (glbarbose@lbl.gov) (510) 495-2593

Chuck Goldman (cagoldman@lbl.gov) (510) 486-4637

Ian Hoffman (ihoffman@lbl.gov) (510) 495-2990

Megan Billingsley (mabillingsley@lbl.gov) (510) 495-2588

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

Allan Chen | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>