Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DOE researchers achieve important genetic breakthroughs to help develop cheaper biofuels

23.12.2011
Innovations in RNA manipulation could lead to advances in many products

Researchers at the U.S. Department of Energy's (DOE's) Joint BioEnergy Institute (JBEI) announced today a major breakthrough in engineering systems of RNA molecules through computer-assisted design, which could lead to important improvements across a range of industries, including the development of cheaper advanced biofuels.

Scientists will use these new "RNA machines", to adjust genetic expression in the cells of microorganisms. This will enable scientists to develop new strains of Escherichia coli (E. coli) that are better able to digest switchgrass biomass and convert released sugars to form three types of transportation fuels – gasoline, diesel and jet fuels.

"This is a perfect example of how our investments in basic science innovations can pave the way for future industries and solutions to our nation's most important challenges," said Energy Secretary Steven Chu. "This breakthrough at the Joint BioEnergy Institute holds enormous potential for the sustainable production of advanced biofuels and countless other valuable goods."

A breakthrough with E. coli could make it cheaper to produce fuel from switchgrass or other non-food biomass plants to create advanced biofuels with the potential to replace gasoline. While the work at JBEI remains focused on the development of advanced biofuels, JBEI's researchers believe that their concepts may help other researchers to develop many other desired products, including biodegradable plastics and therapeutic drugs. For example, some researchers have already started a project to investigate how to use the "RNA machines" to increase the safety and efficacy of medicine therapies to treat diseases, including diabetes and Parkinson's.

Biological systems are incredibly complex, which makes it difficult to engineer systems of microorganisms that will produce desired products in predictable amounts. JBEI's work, which will be featured in the December 23rd issue of Science magazine, is the first of its kind to set up and adjust a RNA system in a predictable way.

Specifically, researchers focused their design-driven approach on RNA sequences that can fold into complicated three dimensional shapes, called ribozymes and aptazymes. By using JBEI-developed computer-assisted models and simulations, researchers then created complex RNA-based control systems that are able to program a large number of genes. In microorganisms, "commands" that are sent into the cell will be processed by the RNA-based control systems, enabling them to help develop desired products.

One of the major goals of synthetic biology is to produce valuable chemical products from simple, inexpensive and renewable starting materials in a sustainable manner. Computer-assisted models and simulations like the one JBEI developed are essential for doing so. Up to this point, such tools for biology have been very limited and JBEI's breakthrough in applying computer assisted design marks an important technical and conceptual achievement for this field.

To view additional details about this research, visit http://newscenter.lbl.gov/news-releases/2011/12/22/cad-for-rna/.

JBEI, led by the Lawrence Berkeley National Laboratory, is one of three Bioenergy Research Centers established by the DOE's Office of Science in 2007. For more information, visit www.jbei.org

Jeff Sherwood | EurekAlert!
Further information:
http://www.doe.gov

More articles from Power and Electrical Engineering:

nachricht World's smallest optical implantable biodevice
26.04.2018 | Nara Institute of Science and Technology

nachricht Cell membrane inspires new ultrathin electronic film
26.04.2018 | University of Tokyo

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>