Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DOE researchers achieve important genetic breakthroughs to help develop cheaper biofuels

23.12.2011
Innovations in RNA manipulation could lead to advances in many products

Researchers at the U.S. Department of Energy's (DOE's) Joint BioEnergy Institute (JBEI) announced today a major breakthrough in engineering systems of RNA molecules through computer-assisted design, which could lead to important improvements across a range of industries, including the development of cheaper advanced biofuels.

Scientists will use these new "RNA machines", to adjust genetic expression in the cells of microorganisms. This will enable scientists to develop new strains of Escherichia coli (E. coli) that are better able to digest switchgrass biomass and convert released sugars to form three types of transportation fuels – gasoline, diesel and jet fuels.

"This is a perfect example of how our investments in basic science innovations can pave the way for future industries and solutions to our nation's most important challenges," said Energy Secretary Steven Chu. "This breakthrough at the Joint BioEnergy Institute holds enormous potential for the sustainable production of advanced biofuels and countless other valuable goods."

A breakthrough with E. coli could make it cheaper to produce fuel from switchgrass or other non-food biomass plants to create advanced biofuels with the potential to replace gasoline. While the work at JBEI remains focused on the development of advanced biofuels, JBEI's researchers believe that their concepts may help other researchers to develop many other desired products, including biodegradable plastics and therapeutic drugs. For example, some researchers have already started a project to investigate how to use the "RNA machines" to increase the safety and efficacy of medicine therapies to treat diseases, including diabetes and Parkinson's.

Biological systems are incredibly complex, which makes it difficult to engineer systems of microorganisms that will produce desired products in predictable amounts. JBEI's work, which will be featured in the December 23rd issue of Science magazine, is the first of its kind to set up and adjust a RNA system in a predictable way.

Specifically, researchers focused their design-driven approach on RNA sequences that can fold into complicated three dimensional shapes, called ribozymes and aptazymes. By using JBEI-developed computer-assisted models and simulations, researchers then created complex RNA-based control systems that are able to program a large number of genes. In microorganisms, "commands" that are sent into the cell will be processed by the RNA-based control systems, enabling them to help develop desired products.

One of the major goals of synthetic biology is to produce valuable chemical products from simple, inexpensive and renewable starting materials in a sustainable manner. Computer-assisted models and simulations like the one JBEI developed are essential for doing so. Up to this point, such tools for biology have been very limited and JBEI's breakthrough in applying computer assisted design marks an important technical and conceptual achievement for this field.

To view additional details about this research, visit http://newscenter.lbl.gov/news-releases/2011/12/22/cad-for-rna/.

JBEI, led by the Lawrence Berkeley National Laboratory, is one of three Bioenergy Research Centers established by the DOE's Office of Science in 2007. For more information, visit www.jbei.org

Jeff Sherwood | EurekAlert!
Further information:
http://www.doe.gov

More articles from Power and Electrical Engineering:

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>