Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diesel-powered fuel cell generates green electricity

14.07.2015

The research partners Volvo Technology (Sweden), Johnson-Matthey (United Kingdom), Modelon AB (Sweden), PowerCell AB (Sweden), Jožef Stefan Institute (Slovenia), Forschungszentrum Jülich (Germany) and Fraunhofer ICT-IMM (Germany) have reached their final goal by the end of the FCGEN project: they have developed a diesel-powered fuel cell system and successfully demonstrated its functionality in autonomous operation mode.

The system consists of a diesel and a water tank, a hydrogen generating module (reformer) and a fuel cell module including a low-temperature-PEM-fuel-cell (LT-PEM) with 55 cells as well as a battery and power electronics.

The system is designed for the use in truck, recreational vehicle and yacht applications. It generates up to three kilowatts electrical power but can easily be modified for larger power ranges. Therewith enough output is available to run electric and electronic small consumers as well as „power guzzlers” like for instance air conditioning or refrigerators.

Hydrogen generation from diesel

To extract the hydrogen, which is needed for the fuel cell, out of the Diesel, the Diesel fuel in the tank is converted into a hydrogen-rich gas by autothermal reforming. This process was developed at Forschungszentrum Jülich and has already proven its high stability for a duration in the range of 10,000 hours.

Carbon monoxide which is also generated by the reforming process is initially converted to a remaining low concentration (< 10 ppm) by means of further reactors (plate heat exchangers by Fraunhofer ICT-IMM) being part of the fuel processor. This is also valid for the sulfur which is contained in the fuel in minor amounts. The resulting gas is primarily composed of hydrogen, carbon dioxide and steam of which the hydrogen is processed in the fuel cell to generate electricity.

Fuel cell system as environmentally friendly option

The catalytic processes needed to convert diesel fuel were realized by using catalysts made by the catalyst producer Johnson-Matthey. The fuel cell developed by PowerCell is characterized by a high long-term stability. The whole system is started up by the combustion of diesel fuel and is running fully automated thanks to the control system developed at the Jožef Stefan Institute. The battery of the system is recharged automatically by the fuel cell.

In the power range from three to ten kilowatt so far only gasoline or diesel fueled electricity generators based on combustion engines (APU) are available at the market. The FCGEN fuel cell system is working with a low noise emission and is virtually environmentally compatible. A further development of the system is planned.

The FCGEN project was funded by the European Community Joint Technology Initiative Hydrogen and Fuel Cells.

Weitere Informationen:

https://www.imm.fraunhofer.de/en/press_publications/press/diesel-powered-fuel-ce...

Dr. Stefan Kiesewalter | Fraunhofer ICT-IMM

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>