Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diesel Bus Alternative

30.05.2014

Electric school buses that power grid could save school districts millions

Electric school buses that feed the power grid could save school districts millions of dollars — and reduce children’s exposure to diesel fumes — based on recent research by the University of Delaware’s College of Earth, Ocean, and Environment (CEOE).


Courtesy: Trans Tech Bus

Electric school buses, such as the Trans Tech model shown here, could save school districts millions if integrated with a vehicle-to-grid system, according to new research.

A new study examines the cost-effectiveness of electric school buses that discharge their batteries into the electrical grid when not in use and get paid for the service. The technology, called vehicle-to-grid (V2G), was pioneered at UD and is being tested with electric cars in a pilot project.

Adapting the system for school bus fleets is a logical application. School buses generally travel distances within electric vehicles’ battery range, and they are not in use for much of the day. Electric school buses also do not release sooty diesel exhaust, which contains pollutants that can cause respiratory irritation, lung cancer and heart disease.

“I see neighborhood kids waiting for and riding school buses out my window or when walking my dog,” said Jeremy Firestone, CEOE professor of marine policy and director of the Center for Carbon-free Power Integration. “Electric buses have the benefit of kids not standing around or having their windows open while diesel fumes are being released.”

For the study, researchers analyzed existing diesel school bus routes in a mid-sized suburban school district in Delaware and calculated the costs and benefits of V2G-capable electric bus replacements. Over 14 years, which is the typical lifespan of a bus, a V2G electric bus fleet could save an estimated $38 million.

“I was surprised,” said study lead author Lance Noel. “The savings go through the roof.”

The economic research took into account costs associated with fuel, electricity and batteries, as well as pollution-related health care expenses and other factors.

A diesel bus costs $110,000, compared with $260,000 for an electric bus equipped with a V2G-capable, 70-kilowatt on-board charger. Diesel buses have an average fuel economy of 6 miles per gallon, including the effects of idling, and emit soot, ozone, sulfur dioxide, nitrous oxide and other pollutants. These fumes can be disproportionately higher within the cabin of a bus compared to surrounding pollution levels.

Add up diesel gas costs plus the medical expenses to society, and the diesel bus looks less cost-effective over time. Electric buses providing V2G services, meanwhile, cover the battery charging and additional capital investment costs, and in addition generate profits while releasing no tailpipe pollution.

Choosing a V2G-capable electric bus over a diesel bus would save a school district $6,070 per bus seat, or $230,000 per bus over the vehicle’s 14-year lifespan. Even with taking out the medical and climate change costs associated with diesel pollution, school districts could still save $5,700 per seat.

“They could save a large amount of money while also shifting away from the consumption of diesel and enhancing school children’s health,” the authors write in the paper.

There is still a way to go before such V2G-capable school buses become a reality, however. Electric school buses are uncommon, with the first Trans Tech all-electric school bus tested in California earlier this year.

While electric school buses can be cost-competitive without providing V2G services, the V2G technology would produce substantially larger savings for school districts.

“The V2G capability is what changes the economics of the school bus,” said study co-author Regina McCormack, who along with Noel is a graduate student in CEOE’s School of Marine Science and Policy.

The study, titled “A Cost Benefit Analysis of a V2G-Capable Electric School Bus compared to a Traditional Diesel School Bus,” appears in the Aug. 1 issue of Applied Energy.

Andrea Boyle Tippett | newswise
Further information:
http://www.udel.edu

Further reports about: Delaware Diesel Electric V2G batteries battery dioxide lifespan pollutants

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>