Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of a wall-climbing drone

21.03.2016

A new wall-climbing drone can approach any type of structure by flying and sticking to the target and utitlizing a pose change and perching mechanism.

The integrity of large structures like bridges, high-rise buildings, wind turbines, and large aircrafts is deeply related with security. Nowadays, due to the aging of large structures and the potential concerns about their collapse, interest in structural health monitoring has risen all over the world.


Concept of CAROS, a drone-type wall-climbing robot system.

Copyright : KAIST


The CAROS has been introduced in various media.

Copyright : KAIST

Though there has been a great deal of research on the inspection of inaccessible large structures using mobile robots, since most existing robots require the installation of additional infrastructure or use magnetic-based technology or vacuum adhesion, it is difficult to apply those technologies to structures with diverse surface shapes and materials.

Professor Hyun Myung in the Department of Civil and Environmental Engineering at Korea Advanced Institute of Science and Technology (KAIST) has developed CAROS (Climbing Aerial RObot System), which does not require installation of any additional infrastructure and which features maximized mobility and safety as a wall-climbing robot.

This robot has higher mobility than existing wall-climbing robots because it can fly. It also has an advantage in that it can restore its pose after an accidental fall due to an unexpected disturbance. Since the robot can stick to the surface, it can perform close inspection and maintenance of the structure. Firstly, the CAROS team designed and analyzed the structure/mechanism of the drone to maximize the flight stability and grip force on walls.

Secondly, they developed the algorithms of flying/climbing mode transformation and wall-climbing control, respectively. These algorithms enable the CAROS to change its mode when it meets a wall while flying. To make these algorithms, the forward and backward kinematics are derived and applied to the system. Lastly, the team developed an autonomous navigation algorithm using sensory information to recognize 3D environments.

This technology also can be used to assess the situation in a fire disaster. Previously, a mobile robot equipped with a water hose and throwing-type mobile robots were developed to extinguish the fire, but it had a disadvantage when entering and moving through narrow spaces.

The CAROS technology can be used as a surveillance robot for use in fires or disasters, as it can pass through narrow indoor environments by changing its mode from wall climbing to flying, and vice-versa, depending on the situation. If CAROS is equipped with a thermal camera, it can detect and track humans through thermal images. In addition, it can transmit environment information by wireless communication.

Currently, FAROS (Fireproof Aerial RObot System) is being developed based on the CAROS that can both fly and climb the vertical wall to overcome narrow or destroyed spaces caused by fire. The robot body is covered with aramid fiber to protect its electric components and mechanical parts from the direct effects of the flame.

Under the aramid fiber-based armor, there are buffer air layers and a Peltier element-based cooling system that help to maintain the air layer within a specific temperature range. For autonomous navigation, the FAROS estimates its pose by utilizing a 2D laser scanner and an IMU (Inertia Measurement Unit) sensor installed in FAROS. With the localization result and a thermal imaging camera installed on FAROS, the robot can also detect and localize the ignition point by dedicated image processing technology.

These technologies are expected to be applied to the inspection or maintenance of structures and objects in remote or inaccessible regions. Such technologies can also be applied to various types of maintenance of urban structures such as inspection of wind turbine blades and cleaning of high-rise buildings and solar panels.

Professor Myung said, “As cities become more crowded with skyscrapers and super structures, fire incidents in these high-rise buildings are massive life-threatening disasters. FAROS can be aptly deployed to the disaster site at an early stage of such incidents to minimize the damage and maximize the safety and efficiency of rescue mission.”

Due to its novelty and potentiality, CAROS and FAROS have received media attention internationally, and the team has applied for related patents.

This research was presented at the Int’l Conf. on Control, Automation and Systems (ICCAS) 2015 held in Busan, Korea, where the research team was awarded the Best Presentation Award.

This research was funded by the KAIST Initiative for Disaster Studies and KAIST Institutes(KI).


Associated links
Original article from Korea Advanced Institute of Science and Technology

Lan Yoon | Research SEA
Further information:
http://www.researchsea.com

Further reports about: KAIST climbing drone high-rise buildings mobile robots wind turbine blades

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>