Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of a wall-climbing drone

21.03.2016

A new wall-climbing drone can approach any type of structure by flying and sticking to the target and utitlizing a pose change and perching mechanism.

The integrity of large structures like bridges, high-rise buildings, wind turbines, and large aircrafts is deeply related with security. Nowadays, due to the aging of large structures and the potential concerns about their collapse, interest in structural health monitoring has risen all over the world.


Concept of CAROS, a drone-type wall-climbing robot system.

Copyright : KAIST


The CAROS has been introduced in various media.

Copyright : KAIST

Though there has been a great deal of research on the inspection of inaccessible large structures using mobile robots, since most existing robots require the installation of additional infrastructure or use magnetic-based technology or vacuum adhesion, it is difficult to apply those technologies to structures with diverse surface shapes and materials.

Professor Hyun Myung in the Department of Civil and Environmental Engineering at Korea Advanced Institute of Science and Technology (KAIST) has developed CAROS (Climbing Aerial RObot System), which does not require installation of any additional infrastructure and which features maximized mobility and safety as a wall-climbing robot.

This robot has higher mobility than existing wall-climbing robots because it can fly. It also has an advantage in that it can restore its pose after an accidental fall due to an unexpected disturbance. Since the robot can stick to the surface, it can perform close inspection and maintenance of the structure. Firstly, the CAROS team designed and analyzed the structure/mechanism of the drone to maximize the flight stability and grip force on walls.

Secondly, they developed the algorithms of flying/climbing mode transformation and wall-climbing control, respectively. These algorithms enable the CAROS to change its mode when it meets a wall while flying. To make these algorithms, the forward and backward kinematics are derived and applied to the system. Lastly, the team developed an autonomous navigation algorithm using sensory information to recognize 3D environments.

This technology also can be used to assess the situation in a fire disaster. Previously, a mobile robot equipped with a water hose and throwing-type mobile robots were developed to extinguish the fire, but it had a disadvantage when entering and moving through narrow spaces.

The CAROS technology can be used as a surveillance robot for use in fires or disasters, as it can pass through narrow indoor environments by changing its mode from wall climbing to flying, and vice-versa, depending on the situation. If CAROS is equipped with a thermal camera, it can detect and track humans through thermal images. In addition, it can transmit environment information by wireless communication.

Currently, FAROS (Fireproof Aerial RObot System) is being developed based on the CAROS that can both fly and climb the vertical wall to overcome narrow or destroyed spaces caused by fire. The robot body is covered with aramid fiber to protect its electric components and mechanical parts from the direct effects of the flame.

Under the aramid fiber-based armor, there are buffer air layers and a Peltier element-based cooling system that help to maintain the air layer within a specific temperature range. For autonomous navigation, the FAROS estimates its pose by utilizing a 2D laser scanner and an IMU (Inertia Measurement Unit) sensor installed in FAROS. With the localization result and a thermal imaging camera installed on FAROS, the robot can also detect and localize the ignition point by dedicated image processing technology.

These technologies are expected to be applied to the inspection or maintenance of structures and objects in remote or inaccessible regions. Such technologies can also be applied to various types of maintenance of urban structures such as inspection of wind turbine blades and cleaning of high-rise buildings and solar panels.

Professor Myung said, “As cities become more crowded with skyscrapers and super structures, fire incidents in these high-rise buildings are massive life-threatening disasters. FAROS can be aptly deployed to the disaster site at an early stage of such incidents to minimize the damage and maximize the safety and efficiency of rescue mission.”

Due to its novelty and potentiality, CAROS and FAROS have received media attention internationally, and the team has applied for related patents.

This research was presented at the Int’l Conf. on Control, Automation and Systems (ICCAS) 2015 held in Busan, Korea, where the research team was awarded the Best Presentation Award.

This research was funded by the KAIST Initiative for Disaster Studies and KAIST Institutes(KI).


Associated links
Original article from Korea Advanced Institute of Science and Technology

Lan Yoon | Research SEA
Further information:
http://www.researchsea.com

Further reports about: KAIST climbing drone high-rise buildings mobile robots wind turbine blades

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>