Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing Power-Over-Fiber Communications Cable: When Total Isolation Is a Good Thing

06.02.2012
Sometimes total electrical isolation is a good thing — and that’s the idea behind a power-over-fiber (PoF) communications cable being developed by engineers at Sandia National Laboratories.

It’s common to isolate communications between systems or devices by using fiber optic cables, said Steve Sanderson of Sandia’s mobility analysis and technical assessment division. But when power also is required, sending it down a copper wire can at times be a safety issue, and substituting it with battery power may not be suitable or practical, he said.

Power-over-fiber cable

Sanderson, Titus Appel and Walter Wrye, a former Sandia intern, are co-inventors of a hybrid cable design that uses fiber to send and regulate optical power to the communications electronics integral to the cable. A patent is pending on the design.

The developers envision their cable replacing existing copper cables in applications related to safety, such as security, explosives, explosion-proof devices, aviation and medical devices.

“The PoF cable has power limitations,” Sanderson said. “It’s not to be construed as a means to power your house, for example, or handle the high speeds of a computer network.

“But because there are growing needs of low-power sensor/control applications related to safety, having convenient optically generated power available is a tremendous benefit.”

The PoF cable ends resemble a typical copper electrical cable with pin and socket connectors. However, optical interface circuits integrated into the connector housing, called a backshell, provide fiber optic transmission of both data communications and optical power.

To conserve energy, optical power is delivered only on demand, Sanderson said.

“The key issue here is to maintain total electrical isolation from any stray electrical energy and high-voltage electrical surges caused by such things as lightning strikes,” he said.

The first-generation PoF cable just delivers optical power to the cable’s internal electronics for data communication between devices. The researchers now are adding the capability to deliver electrical power externally to a connected low-power device, Sanderson said.

In the cable’s current version, the backshell encapsulates circular stacked circuit boards with LEDs coupled to plastic optical fibers for communications, and a laser diode and miniaturized photovoltaic-type cell coupled to the ends of a single glass fiber to deliver optical power.

In the next version, the team plans to use only glass fibers. “Although plastic fiber requires less preparation time than glass, it takes up more room,” Sanderson said.

The team recently tested a PoF low-energy detonator firing cable with fireset electronics built into the backshell. The optically powered fireset embeds a microcontroller that reports such things as detonator resistance, temperature and charging voltages, and receives command messages to fire the detonator. When it’s idle or powered down, the circuitry is designed to short the detonator input leads to prevent unwanted electrical energy from reaching it.

The researchers are working with next-generation microcontrollers, new packaging layouts and new optical devices to reduce the size. Team members also are developing a rugged, production-ready PoF cable and are working to reduce the backshell’s length, decrease the weight and lower costs.

“One of our ongoing objectives is to reduce the physical size so that it’s more widely used,” said Sanderson.

Sandia National Laboratories is a multiprogram laboratory operated and managed by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia news media contact: Sue Holmes, sholmes@sandia.gov, (505) 844-6362

Sue Holmes | Newswise Science News
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>