Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing Power-Over-Fiber Communications Cable: When Total Isolation Is a Good Thing

06.02.2012
Sometimes total electrical isolation is a good thing — and that’s the idea behind a power-over-fiber (PoF) communications cable being developed by engineers at Sandia National Laboratories.

It’s common to isolate communications between systems or devices by using fiber optic cables, said Steve Sanderson of Sandia’s mobility analysis and technical assessment division. But when power also is required, sending it down a copper wire can at times be a safety issue, and substituting it with battery power may not be suitable or practical, he said.

Power-over-fiber cable

Sanderson, Titus Appel and Walter Wrye, a former Sandia intern, are co-inventors of a hybrid cable design that uses fiber to send and regulate optical power to the communications electronics integral to the cable. A patent is pending on the design.

The developers envision their cable replacing existing copper cables in applications related to safety, such as security, explosives, explosion-proof devices, aviation and medical devices.

“The PoF cable has power limitations,” Sanderson said. “It’s not to be construed as a means to power your house, for example, or handle the high speeds of a computer network.

“But because there are growing needs of low-power sensor/control applications related to safety, having convenient optically generated power available is a tremendous benefit.”

The PoF cable ends resemble a typical copper electrical cable with pin and socket connectors. However, optical interface circuits integrated into the connector housing, called a backshell, provide fiber optic transmission of both data communications and optical power.

To conserve energy, optical power is delivered only on demand, Sanderson said.

“The key issue here is to maintain total electrical isolation from any stray electrical energy and high-voltage electrical surges caused by such things as lightning strikes,” he said.

The first-generation PoF cable just delivers optical power to the cable’s internal electronics for data communication between devices. The researchers now are adding the capability to deliver electrical power externally to a connected low-power device, Sanderson said.

In the cable’s current version, the backshell encapsulates circular stacked circuit boards with LEDs coupled to plastic optical fibers for communications, and a laser diode and miniaturized photovoltaic-type cell coupled to the ends of a single glass fiber to deliver optical power.

In the next version, the team plans to use only glass fibers. “Although plastic fiber requires less preparation time than glass, it takes up more room,” Sanderson said.

The team recently tested a PoF low-energy detonator firing cable with fireset electronics built into the backshell. The optically powered fireset embeds a microcontroller that reports such things as detonator resistance, temperature and charging voltages, and receives command messages to fire the detonator. When it’s idle or powered down, the circuitry is designed to short the detonator input leads to prevent unwanted electrical energy from reaching it.

The researchers are working with next-generation microcontrollers, new packaging layouts and new optical devices to reduce the size. Team members also are developing a rugged, production-ready PoF cable and are working to reduce the backshell’s length, decrease the weight and lower costs.

“One of our ongoing objectives is to reduce the physical size so that it’s more widely used,” said Sanderson.

Sandia National Laboratories is a multiprogram laboratory operated and managed by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia news media contact: Sue Holmes, sholmes@sandia.gov, (505) 844-6362

Sue Holmes | Newswise Science News
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>