Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing Power-Over-Fiber Communications Cable: When Total Isolation Is a Good Thing

06.02.2012
Sometimes total electrical isolation is a good thing — and that’s the idea behind a power-over-fiber (PoF) communications cable being developed by engineers at Sandia National Laboratories.

It’s common to isolate communications between systems or devices by using fiber optic cables, said Steve Sanderson of Sandia’s mobility analysis and technical assessment division. But when power also is required, sending it down a copper wire can at times be a safety issue, and substituting it with battery power may not be suitable or practical, he said.

Power-over-fiber cable

Sanderson, Titus Appel and Walter Wrye, a former Sandia intern, are co-inventors of a hybrid cable design that uses fiber to send and regulate optical power to the communications electronics integral to the cable. A patent is pending on the design.

The developers envision their cable replacing existing copper cables in applications related to safety, such as security, explosives, explosion-proof devices, aviation and medical devices.

“The PoF cable has power limitations,” Sanderson said. “It’s not to be construed as a means to power your house, for example, or handle the high speeds of a computer network.

“But because there are growing needs of low-power sensor/control applications related to safety, having convenient optically generated power available is a tremendous benefit.”

The PoF cable ends resemble a typical copper electrical cable with pin and socket connectors. However, optical interface circuits integrated into the connector housing, called a backshell, provide fiber optic transmission of both data communications and optical power.

To conserve energy, optical power is delivered only on demand, Sanderson said.

“The key issue here is to maintain total electrical isolation from any stray electrical energy and high-voltage electrical surges caused by such things as lightning strikes,” he said.

The first-generation PoF cable just delivers optical power to the cable’s internal electronics for data communication between devices. The researchers now are adding the capability to deliver electrical power externally to a connected low-power device, Sanderson said.

In the cable’s current version, the backshell encapsulates circular stacked circuit boards with LEDs coupled to plastic optical fibers for communications, and a laser diode and miniaturized photovoltaic-type cell coupled to the ends of a single glass fiber to deliver optical power.

In the next version, the team plans to use only glass fibers. “Although plastic fiber requires less preparation time than glass, it takes up more room,” Sanderson said.

The team recently tested a PoF low-energy detonator firing cable with fireset electronics built into the backshell. The optically powered fireset embeds a microcontroller that reports such things as detonator resistance, temperature and charging voltages, and receives command messages to fire the detonator. When it’s idle or powered down, the circuitry is designed to short the detonator input leads to prevent unwanted electrical energy from reaching it.

The researchers are working with next-generation microcontrollers, new packaging layouts and new optical devices to reduce the size. Team members also are developing a rugged, production-ready PoF cable and are working to reduce the backshell’s length, decrease the weight and lower costs.

“One of our ongoing objectives is to reduce the physical size so that it’s more widely used,” said Sanderson.

Sandia National Laboratories is a multiprogram laboratory operated and managed by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia news media contact: Sue Holmes, sholmes@sandia.gov, (505) 844-6362

Sue Holmes | Newswise Science News
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms

05.12.2016 | Life Sciences

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>