Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Determining the potential for optimizing electrostatic precipitators quickly and inexpensively

Siemens brings the mobile test installation to the customer

The Siemens Industry Solutions Division offers operators of electrostatic precipitators (ESPs) a mobile installation for testing and optimizing the collecting efficiency.

A 20-foot container houses this test installation, which includes the high voltage power supply as well as the control and optimization systems needed to operate one ESP field. Setting up and commissioning takes only about one-third of the time required to construct a test installation on-site. This means that the operator obtains the basic information for deciding on modernization measures quickly and inexpensively. This mobile test installation can also be used to bridge plant faults and failures at short notice.

Electrostatic precipitators are used for cleaning exhaust gases in industrial plants, power plants and refuse incineration plants. They remove pollutants such as dust, soot and aerosols. However, the status of an electrostatic precipitator can change during its operational life. For example, new emission limits or changed operational conditions often require an increase in collecting efficiency.

Compared to a mechanical expansion of the ESP, the installation of new electrical equipment offers a fast and low cost solution. Test operation with new electrical equipment has proven itself as a good way of obtaining reliable, objective evidence of the potential for optimizing ESP operation. The necessary components have previously been assembled separately, and then set up and connected on-site. This work can take several days and lead to interruptions in the operation of the ESP – and may even bring the entire plant to a standstill.

Using the mobile test installation enables the time required for installation and commissioning to be reduced by two-thirds to about one working day. The actual reconnection can also be made without interrupting operation, and the operator doesn't have to wait until the next scheduled plant inspection to test the new equipment. Even transporting the components to the plant is now significantly simpler and can be done more quickly.

Siemens uses a 20-foot standard container, in which all the electrical and control equipment required to operate one ESP field has been pre-installed. This includes an IGBT based converter, a high-voltage rectifier, and the high-voltage and power supply cables. Used in conjunction with PC-based optimization and control software, this ensures not only high collecting efficiency but also lower energy consumption.

The container is equipped with PC workstation. The pre-installed test procedures available for testing ESP operation only need minor adaptation to specific local conditions. A permanently installed remote interface supports the operating personnel on-site and, if required, facilitates remote monitoring and control of the precipitation plant.

Siemens container-based test installation provides the plant operator with information about the performance of his ESP within the shortest possible time, and also gives him indications of possible ways of improving performance and saving energy. This mobile test installation can also be used to bridge malfunctions and ESP failures. Straightforward transport and quick installation reduce ESP downtime and help to minimize production losses.

Siemens's new mobile test installation will initially be used in Europe.

The Siemens Industry Sector (Erlangen, Germany) is the world's leading supplier of production, transportation, building and lighting technologies. With integrated automation technologies as well as comprehensive industry-specific solutions, Siemens increases the productivity, efficiency and flexibility of its customers in the fields of industry and infrastructure. The Sector consists of six Divisions: Building Technologies, Drive Technologies, Industry Automation, Industry Solutions, Mobility and Osram. With around 222,000 employees worldwide Siemens Industry posted in fiscal year 2008 a profit of EUR3.86 billion with revenues totaling EUR38 billion.

With the business activities of Siemens VAI Metal Technologies, (Linz, Austria), Siemens Water Technologies (Warrendale, Pa., U.S.A.), and Industrial Technologies, (Erlangen, Germany), the Siemens Industry Solutions Division (Erlangen, Germany) is one of the world's leading solution and service providers for industrial and infrastructure facilities. Using its own products, systems and process technologies, Industry Solutions develops and builds plants for end customers, commissions them and provides support during their entire life cycle. With around 31,000 employees worldwide Siemens Industry Solutions achieved an order intake of EUR 8.415 billon in fiscal year 2008.

Further information and downloads at:

Dr. Rainer Schulze | Siemens Industry Sector
Further information:

More articles from Power and Electrical Engineering:

nachricht New method increases energy density in lithium batteries
24.10.2016 | Columbia University School of Engineering and Applied Science

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>