Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting Energy Losses from the Air

13.09.2013
Siemens has developed a new technology that can detect energy losses in large buildings and even entire city districts.

The technology uses an image processing system that works with aerial photographs taken by a camera drone. The system software uses the data from the cameras to create a three-dimensional model that visibly depicts thermal radiation, liquid and gas losses, areas with poor insulation, and spots with heavy moisture. The technology is already being used in the construction project for the new Aspern Urban Lakeside district in Vienna, Austria.



Searches for sources of geothermal losses (hotspots) were previously conducted on the ground, as were monitoring operations to measure progress at major construction sites. Stationary webcams or laser scanners were used here, but both have drawbacks because their viewing angle is often limited and the imaging devices can also get dirty from dust and rain. Recording equipment in a camera drone doesn't need to be cleaned and can also be used to create three-dimensional images.

The Aspern drone was built by Ascending Technologies. Depending on what it's used for, the drone can be equipped with either a conventional camera or a thermal imaging camera.

Aerial thermal inspections with the latter take less time and are also more reliable than inspections on the ground. Experts from Siemens Corporate Technology can collect all the required data during a flyover and then analyze it on a computer. This makes it possible to easily monitor objects that are normally difficult to access, and whose examination using conventional technologies would in some cases require inspectors to climb buildings.

The drone equipped with Siemens technology has been documenting the progress of construction in Aspern in test operations for a year. The new district in the eastern part of Vienna is itself a type of test lab for future urban design. The data the drone collects from above the giant construction site will help optimize planning operations in relation to logistics, energy consumption, and financing throughout the construction period. Use of the system is not limited to construction projects, as it can also assist with the efficient maintenance and servicing of finished buildings.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>