Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defending against electromagnetic attacks

02.12.2013
Electromagnetic fields can interfere with or damage electronic devices. Electromagnetic radiation is invisible to people. A new measuring instrument can now determine the strength, frequency, and direction of the attack.

We are all familiar with the power of electromagnetic attacks from the movies: in Ocean‘s Eleven, George Clooney’s gang disables Las Vegas’ power grid, and Keanu Reeves’ henchmen hold off the enemy robot fighters from their spaceship in the Matrix Trilogy.


Tools for defending against electromagnetic attack (right to left): an antenna set (on tripod) for sensing the environment, a RF measuring device for conditioning the signals and a computer that calculates the relevant data.
© Fraunhofer INT

The heroes in the films succeed by sending out a very strong electromagnetic pulse. This changes the voltage in the vicinity so that regulators, switches, and circuit boards in electronic equipment go crazy. You cannot smell, taste, or feel this radiation. Those affected by it do not know why computers or machines breakdown or from which direction the attack comes.

“What works on the silver screen is also conceivable in reality,” confirms Michael Jöster from the Fraunhofer Institute for Technological Trend Analysis INT in Euskirchen, just south of Cologne, Germany. The researchers there are concentrating on the question of how these attacks can be detected. They have developed a measurement instrument for this purpose that is capable of determining the strength, fre- quency, and direction of electromagnetic attacks. The engineering requirements are steep: the detector must measure very high field strengths from very short pulses, yet not be destroyed or damaged itself.

Identifying the type, location, and duration of the attacks

Four specialized antennas make up the INT demonstration instrument that sample the environment around the subject device to be protected. Each of these covers a quadrant of 90 degrees and detects all types of electromagnetic sources.

A high-frequency module preconditions the signals for measurement and determines when the electromagnetic pulse started and stopped. A computer in a monitoring station connected via an optical conductor then calculates the values for the signal and presents them on a screen. “We identify the type and location of the source of the invisible attack as well as its duration as though we had a sixth sense.

Those affected by the attack can use this information to mount a rapid and appropriate protective response,” explains Jöster. The threat scenarios are real: criminals disrupt computer networks of banks, exchanges, and companies. They cause confusion in order to bypass monitoring points or overcome alarm systems, en- abling them to penetrate into secure areas.

Individual cases of these kinds of attacks have already been documented: thieves used electromagnetic waves to crack the security sys- tems of limousines in Berlin. Their weapons are no larger than a suitcase. High-power microwave sources are suitable for those kinds of attacks, for example. Depending on the field strength, the attacker using these high-power microwaves can be located several meters from the target of the attack.

“Located In the right position, it is enough to press a button to trigger the pulse. Just like in Ocean’s Eleven or Matrix, the electronic systems nearby can fail or be damaged,” as Jöster describes the danger.

Electronic devices can withstand a certain amount of radiation. This is measured in volts per meter (V/m) – called the electromagnetic compatibility (EMC). Otherwise, they would not operate reliably. Every device could interfere with others in its immediate vicinity. Depending on the category of usage, they therefore have to fulfill specific EMC requirements. These are significantly higher for industrial applications than for common things like Smartphones, televisions, or stereo equipment. One example where safety is important is automotive engineering.

“The importance of electronic components will continue to increase in the future. Completely shielding individual devices from electromagnetic radiation would certainly be theoretically possible, but much too expensive though. Systems are needed that can detect these kinds of attacks. If you know what is attacking, you can also react correctly to it,” according to Jöster.

Michael Jöster | Fraunhofer-Institute
Further information:
http://www.fraunhofer.de/en/press/research-news/2013/december/Defending-against-electromagnetic-attacks.html

More articles from Power and Electrical Engineering:

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>