Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Debunking Solar Energy Efficiency Measurements

11.01.2011
TAU "recalculates" efficiency paradigm for thin film solar panels

In recent years, developers have been investigating light-harvesting thin film solar panels made from nanotechnology — and promoting efficiency metrics to make the technology marketable. Now a Tel Aviv University researcher is providing new evidence to challenge recent "charge" measurements for increasing solar panel efficiency.

Offering a less expensive, smaller solution than traditional panels, Prof. Eran Rabani of Tel Aviv University's School of Chemistry at the Raymond and Beverly Sackler Faculty of Exact Sciences puts a lid on some current hype that promises to increase efficiencies in thin film panels. His research, published recently in the journals Nano Letters and Chemical Physics Letters, may bring the development of new solar energy technologies more down to earth.

Prof. Rabani combines a new theoretical approach with computer simulations. "Our theory shows that current predictions to increase efficiencies won't work. The increase in efficiencies cannot be achieved yet through Multiexciton Generation, a process by which several charge carriers (electrons and holes) are generated from one photon," he says.

Inefficient as "charged"

But both new and existing theories bode well for the development of other strategies in future solar energy technology, he points out. Newer approaches published in journals such as Science may provide means for increasing the efficiencies of solar technology, and perhaps would also be useful in storage of solar energy, Prof. Rabani and his team of researchers believe.

A chemical physicist, Prof. Rabani investigates how to separate charges from the sun efficiently. In 2004, physicists suggested that more than one electron-hole pair could be pulled from one photon in a complicated process in semiconductor nanocrystals. If this were possible, the charge would be doubled, and so the solar energy efficiency would increase. "We've shown that this idea doesn't work," Prof. Rabani says.

One step closer to marketing the sun

The development of more efficient and less expensive devices to make use of solar energy is one of the greatest challenges in science today. Billions of dollars are being spent to find the best methods to collect electron "charges" from the sun.

Typically, one photon from the sun absorbed in a thin film solar panel can excite one electron-hole pair, which is then converted to electricity. Currently there are claims that if more electron-hole pairs can be excited after the photon is absorbed, a larger fraction of the photon energy can successfully be converted into electricity, thus increasing device efficiency.

The theory that Prof. Rabani developed with his Israeli colleagues shows why this process is not as efficient as originally conceived. It's bad news for panel producers looking to create more efficient solar panels, but good news for researchers who are now free to look to the next realistic step for developing a technology that works.

Prof. Rabani is now on sabbatical at the University of California, Berkeley as a Miller Visiting Professor.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>