Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deaf get help "hearing" with skin

30.11.2009
An apparatus that converts sound to vibrations makes it possible for individuals who are deaf and blind or severely hearing impaired to perceive and recognize sounds with their skin.

The method, which can also be adapted for infants, has been developed by engineering researcher Parivash Ranjbar, who is submitting his findings in a new dissertation at Örebro University in Sweden.

Above all, individuals who are both deaf and blind are a vulnerable group that find it difficult to understand what is going on in their surroundings. But the new aid, which has been named "Monitor," enables them to distinguish different kinds of sounds, such as voices, telephones, birdsong, cars, thunder, rain, and wind.

"After brief training, one of my trial subjects could even understand what was being said in a conversation," says Parivash Ranjbar.

Converted to lower frequencies
The apparatus works by registering sounds and converting them to lower frequencies that the skin can perceive as vibrations, without the sound losing its distinct character. While human hearing can perceive sound frequencies between 20 and 20,000 Hz, the skin cannot sense frequencies higher than 800 Hz. Moreover, the skin cannot distinguish between sounds that are too close to each other.

"The deaf-blind already have an acquired ability to glean information from vibrations. For example, they can recognize the step of different individuals through the vibrations in the floor, or feel the vibrations from a pot when the water starts to boil. But with Monitor, they have entirely new possibilities of keeping up with what's going on in their surroundings, and this makes them feel much more secure."

Easy to use
When Parivash Ranjbar had a group of deaf-blind people test the apparatus, they managed to identify a large portion of the sounds, both in the home and outdoors.

"It was easy for the trial subjects to learn to use it, even for those who were born deaf and therefore have no sound library to fall back on."

Monitor, which is small enough for people to carry with them everywhere, consists of a microphone that picks up sounds, a processor that converts them, and a vibrator part that conveys them. The vibrator can also be mounted in pacifiers and bottle nipples to provide infants born without hearing with a chance to become familiar with sounds through their lips and perceive what is going on around them.

Early learning
"Learning early is a great advantage. This also gives parents the possibility of communicating with their babies through their voices, which is especially important if the child is also blind."

"Many more aids can be developed using this technology, such as helping people who are deaf and blind to ride horseback, using vibrations that communicate their position on a track. I'm constantly getting new ideas when I see the needs and possibilities actually exist," says Parivash Ranjbar.

Parivash Ranjbar is a computer engineer with a background as a practical nurse, and much of her research was carried out at the Audiological Research Center in Örebro.

For more information, please contact Parivash Ranjbar, cell phone: +46 (0)70-221 36 50.

Ingrid Lundegårdh | idw
Further information:
http://www.vr.se

Further reports about: Sound recognize sounds with their skin vibrations

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>