Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deaf get help "hearing" with skin

30.11.2009
An apparatus that converts sound to vibrations makes it possible for individuals who are deaf and blind or severely hearing impaired to perceive and recognize sounds with their skin.

The method, which can also be adapted for infants, has been developed by engineering researcher Parivash Ranjbar, who is submitting his findings in a new dissertation at Örebro University in Sweden.

Above all, individuals who are both deaf and blind are a vulnerable group that find it difficult to understand what is going on in their surroundings. But the new aid, which has been named "Monitor," enables them to distinguish different kinds of sounds, such as voices, telephones, birdsong, cars, thunder, rain, and wind.

"After brief training, one of my trial subjects could even understand what was being said in a conversation," says Parivash Ranjbar.

Converted to lower frequencies
The apparatus works by registering sounds and converting them to lower frequencies that the skin can perceive as vibrations, without the sound losing its distinct character. While human hearing can perceive sound frequencies between 20 and 20,000 Hz, the skin cannot sense frequencies higher than 800 Hz. Moreover, the skin cannot distinguish between sounds that are too close to each other.

"The deaf-blind already have an acquired ability to glean information from vibrations. For example, they can recognize the step of different individuals through the vibrations in the floor, or feel the vibrations from a pot when the water starts to boil. But with Monitor, they have entirely new possibilities of keeping up with what's going on in their surroundings, and this makes them feel much more secure."

Easy to use
When Parivash Ranjbar had a group of deaf-blind people test the apparatus, they managed to identify a large portion of the sounds, both in the home and outdoors.

"It was easy for the trial subjects to learn to use it, even for those who were born deaf and therefore have no sound library to fall back on."

Monitor, which is small enough for people to carry with them everywhere, consists of a microphone that picks up sounds, a processor that converts them, and a vibrator part that conveys them. The vibrator can also be mounted in pacifiers and bottle nipples to provide infants born without hearing with a chance to become familiar with sounds through their lips and perceive what is going on around them.

Early learning
"Learning early is a great advantage. This also gives parents the possibility of communicating with their babies through their voices, which is especially important if the child is also blind."

"Many more aids can be developed using this technology, such as helping people who are deaf and blind to ride horseback, using vibrations that communicate their position on a track. I'm constantly getting new ideas when I see the needs and possibilities actually exist," says Parivash Ranjbar.

Parivash Ranjbar is a computer engineer with a background as a practical nurse, and much of her research was carried out at the Audiological Research Center in Örebro.

For more information, please contact Parivash Ranjbar, cell phone: +46 (0)70-221 36 50.

Ingrid Lundegårdh | idw
Further information:
http://www.vr.se

Further reports about: Sound recognize sounds with their skin vibrations

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>