Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Deaf get help "hearing" with skin

An apparatus that converts sound to vibrations makes it possible for individuals who are deaf and blind or severely hearing impaired to perceive and recognize sounds with their skin.

The method, which can also be adapted for infants, has been developed by engineering researcher Parivash Ranjbar, who is submitting his findings in a new dissertation at Örebro University in Sweden.

Above all, individuals who are both deaf and blind are a vulnerable group that find it difficult to understand what is going on in their surroundings. But the new aid, which has been named "Monitor," enables them to distinguish different kinds of sounds, such as voices, telephones, birdsong, cars, thunder, rain, and wind.

"After brief training, one of my trial subjects could even understand what was being said in a conversation," says Parivash Ranjbar.

Converted to lower frequencies
The apparatus works by registering sounds and converting them to lower frequencies that the skin can perceive as vibrations, without the sound losing its distinct character. While human hearing can perceive sound frequencies between 20 and 20,000 Hz, the skin cannot sense frequencies higher than 800 Hz. Moreover, the skin cannot distinguish between sounds that are too close to each other.

"The deaf-blind already have an acquired ability to glean information from vibrations. For example, they can recognize the step of different individuals through the vibrations in the floor, or feel the vibrations from a pot when the water starts to boil. But with Monitor, they have entirely new possibilities of keeping up with what's going on in their surroundings, and this makes them feel much more secure."

Easy to use
When Parivash Ranjbar had a group of deaf-blind people test the apparatus, they managed to identify a large portion of the sounds, both in the home and outdoors.

"It was easy for the trial subjects to learn to use it, even for those who were born deaf and therefore have no sound library to fall back on."

Monitor, which is small enough for people to carry with them everywhere, consists of a microphone that picks up sounds, a processor that converts them, and a vibrator part that conveys them. The vibrator can also be mounted in pacifiers and bottle nipples to provide infants born without hearing with a chance to become familiar with sounds through their lips and perceive what is going on around them.

Early learning
"Learning early is a great advantage. This also gives parents the possibility of communicating with their babies through their voices, which is especially important if the child is also blind."

"Many more aids can be developed using this technology, such as helping people who are deaf and blind to ride horseback, using vibrations that communicate their position on a track. I'm constantly getting new ideas when I see the needs and possibilities actually exist," says Parivash Ranjbar.

Parivash Ranjbar is a computer engineer with a background as a practical nurse, and much of her research was carried out at the Audiological Research Center in Örebro.

For more information, please contact Parivash Ranjbar, cell phone: +46 (0)70-221 36 50.

Ingrid Lundegårdh | idw
Further information:

Further reports about: Sound recognize sounds with their skin vibrations

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>