Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deaf get help "hearing" with skin

30.11.2009
An apparatus that converts sound to vibrations makes it possible for individuals who are deaf and blind or severely hearing impaired to perceive and recognize sounds with their skin.

The method, which can also be adapted for infants, has been developed by engineering researcher Parivash Ranjbar, who is submitting his findings in a new dissertation at Örebro University in Sweden.

Above all, individuals who are both deaf and blind are a vulnerable group that find it difficult to understand what is going on in their surroundings. But the new aid, which has been named "Monitor," enables them to distinguish different kinds of sounds, such as voices, telephones, birdsong, cars, thunder, rain, and wind.

"After brief training, one of my trial subjects could even understand what was being said in a conversation," says Parivash Ranjbar.

Converted to lower frequencies
The apparatus works by registering sounds and converting them to lower frequencies that the skin can perceive as vibrations, without the sound losing its distinct character. While human hearing can perceive sound frequencies between 20 and 20,000 Hz, the skin cannot sense frequencies higher than 800 Hz. Moreover, the skin cannot distinguish between sounds that are too close to each other.

"The deaf-blind already have an acquired ability to glean information from vibrations. For example, they can recognize the step of different individuals through the vibrations in the floor, or feel the vibrations from a pot when the water starts to boil. But with Monitor, they have entirely new possibilities of keeping up with what's going on in their surroundings, and this makes them feel much more secure."

Easy to use
When Parivash Ranjbar had a group of deaf-blind people test the apparatus, they managed to identify a large portion of the sounds, both in the home and outdoors.

"It was easy for the trial subjects to learn to use it, even for those who were born deaf and therefore have no sound library to fall back on."

Monitor, which is small enough for people to carry with them everywhere, consists of a microphone that picks up sounds, a processor that converts them, and a vibrator part that conveys them. The vibrator can also be mounted in pacifiers and bottle nipples to provide infants born without hearing with a chance to become familiar with sounds through their lips and perceive what is going on around them.

Early learning
"Learning early is a great advantage. This also gives parents the possibility of communicating with their babies through their voices, which is especially important if the child is also blind."

"Many more aids can be developed using this technology, such as helping people who are deaf and blind to ride horseback, using vibrations that communicate their position on a track. I'm constantly getting new ideas when I see the needs and possibilities actually exist," says Parivash Ranjbar.

Parivash Ranjbar is a computer engineer with a background as a practical nurse, and much of her research was carried out at the Audiological Research Center in Örebro.

For more information, please contact Parivash Ranjbar, cell phone: +46 (0)70-221 36 50.

Ingrid Lundegårdh | idw
Further information:
http://www.vr.se

Further reports about: Sound recognize sounds with their skin vibrations

More articles from Power and Electrical Engineering:

nachricht Touch Displays WAY-AX and WAY-DX by WayCon
27.06.2017 | WayCon Positionsmesstechnik GmbH

nachricht Air pollution casts shadow over solar energy production
27.06.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>