Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DBFZ publishes Report about the energetic pathways for micro-algae

15.08.2013
As part of a joint research project, the Lausitz University, the Technical University of Freiberg and the German Biomass Research Centre (DBFZ) have studied and assessed several potential material and energy use pathways for micro-algae.

The goal was to specifically investigate the utilization of microalgae produced from flue gas of the facilities of Vattenfall. The final report of the project is now available online as DBFZ-Report 16 (www.dbfz.de) or as print version.

Several algae production plants in Germany and worldwide are already running or under construction. There is a huge research on the right production pathways. What often is missing is a specific research on the utilization of the produced algae and its comparison - especially when the algae are produced from flue gas. The DBFZ-Report "Algae Biorefinery – Material and energy use of algae” gives a detailed overview on existing processes for an energetic utilization of microalgae.

Algal biomass may be converted into energy by a variety of different means. A wide range of different conversion technologies are available for this purpose. They include physical, thermo-chemical, biochemical and biological treatments to create energy-rich products from the source biomass. In the report published mainly thermo-chemical conversion treatments like hydrothermal processes (liquefaction (HTL) and carbonization (HTC)), gasification and hydrogenation are investigated. Beside that the application of micro-algae as a substrate for biogas plants, for biodiesel production and as animal feed is researched too.

An energy balance is conducted for the Processes Biodiesel, Biogas, HTC, HTL and direct hydrogenation. To achieve specific results, the algae Chlorella vulgaris, Scenedesmus obliquus and Selenastrum rinoi were examined for their energetic potential in the investigation.

As a result, the report shows, that in general several pathways are possible, but great differences exist concerning the state of development and the energy efficiency of the processes.

The german version will be published shortly by the University of Freiberg.

Weitere Informationen:
http://www.dbfz.de/web/en/publications/dbfz-reports.html

Paul Trainer | idw
Further information:
http://www.dbfz.de

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>