Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data storage: Keeping the heat on

09.06.2011
Better insulation makes phase-change memory work faster and more efficiently

The perfect data storage solution should offer fast access to data, maintain data in the absence of external power, and be able to withstand large numbers of read–write cycles.

Phase-change random access memory (PCRAM), a type of non-volatile memory that uses the amorphous and crystalline states of phase-change materials for encoding data, can satisfy all of these criteria. Unfortunately, PCRAM also tends to have impractically high power requirements that have impeded its application in many devices. Desmond Loke and co-workers at the A*STAR Data Storage Institute have now demonstrated a technology that could help reduce the power requirements of PCRAM[1].

The high power requirements of PCRAM are a consequence of the high heat levels necessary to drive the transformation between the crystalline and amorphous phases. This heat in turn usually requires relatively large current pulses, which also makes it difficult to integrate with small transistors. Loke and co-workers designed their PCRAM to make the most of this generated heat by replacing the dielectric that surrounds the phase-change material with a material that also acts as a high-performance thermal insulator.

Most dielectric materials, such as silicon dioxide (SiO2) and aluminum oxide (Al2O3), are not particularly good thermal insulators. Conversely, most thermal insulators, such as the amorphous phase-change material germanium antimony telluride (Ge2Sb2Te5), are not very good electrical insulators. The researchers got the best of both worlds by developing a periodic dielectric structure, known as a superlattice-like (SLL), for integration into the PCRAM. The SLL dielectric, which comprises alternating layers of SiO2 and Ge2Sb2Te5 (see image) each just 2–3 nanometers thick, is both a good thermal insulator and a good electrical insulator.

The SLL dielectric in the PCRAM device reduces heat loss from the phase-change material, allowing the phase transition to be driven more efficiently. Consequently, the resulting PCRAM needs smaller currents, less power and less time to switch between the amorphous and the crystalline states. At the same time, the excellent electrical insulation provided by the SLL dielectric prevented current-driven breakdown, leading to a device endurance of more than a billion cycles.

The researchers believe their findings could help accelerate the development of energy-efficient, high-speed PCRAM, which could replace the use of conventional types of RAM, such as flash memory, in electronic devices. “We have already identified techniques to further improve the performance of PCRAM,” says Loke. “For example, by reducing the size of the memory cell, we can expect even higher speeds and lower power consumption levels.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Journal information

[1] Loke, D. et al. Superlatticelike dielectric as a thermal insulator for phase-change random access memory. Applied Physics Letters 97, 243508 (2010).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6328
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>