Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


CUNY Energy Institute Battery System Could Reduce Buildings' Electric Bills

Researchers with City College-based Center Devise Method to Control Dendrite Formation in Safe, Low-Cost Zinc Anode Batteries
The CUNY Energy Institute, which has been developing innovative low-cost batteries that are safe, non-toxic, and reliable with fast discharge rates and high energy densities, announced that it has built an operating prototype zinc anode battery system. The Institute said large-scale commercialization of the battery would start later this year.

Zinc anode batteries offer an environmentally friendlier and less costly alternative to nickel cadmium batteries. In the longer term, they also could replace lead-acid batteries at the lower cost end of the market. However, the challenge of dendrite formation associated with zinc had to be addressed. Dendrites are crystalline structures that cause batteries to short out.

To prevent dendrite build-up, CUNY researchers developed a flow-assisted zinc anode battery with a sophisticated advanced battery management system (BMS) that controls the charge/discharge protocol. To demonstrate the new technology and its applications, which range from peak electricity demand reduction to grid-scale energy storage, they have assembled a 36 kilowatt-hour rechargeable battery system.

The system, housed in the basement of Steinman Hall on The City College of New York campus, consists of 36 individual one kWh nickel-zinc flow-assisted cells strung together and operated by the BMS. In peak electricity demand reduction, batteries charge during low usage periods, i.e. overnight, and discharge during peak-demand periods when surcharges for power usage are very high.

“This is affordable, rechargeable electricity storage made from cheap, non-toxic materials that are inherently safe,” said Dr. Sanjoy Banerjee, director of the CUNY Energy Institute and distinguished professor of engineering in CCNY’s Grove School of Engineering. “The entire Energy Institute has worked on these batteries – stacking electrodes, mounting terminals, connecting to the inverters – and they are going to be a game changer for the electric grid.”

The batteries are designed for more than 5,000 – 10,000 charge cycles and a useful life exceeding ten years. The demonstration system is being expanded currently to 100 kWh, with another 200 kWh to be installed later this year. At that point, it will be capable of meeting more than 30 percent of Steinman Hall’s peak-demand power needs, yielding savings of $6,000 or more per month.

Professor Banerjee sees initial applications for the batteries in industrial facilities and large, commercial properties. The nickel-cadmium (Ni-Cd) batteries that would be initially replaced are used in applications that range from backup power for server farms to very large starter motors. Other large-scale Ni-Cd applications include grid support, like a system in Alaska that deploys a 45 MW Ni-Cd battery array.

The CUNY Energy Institute’s zinc anode battery system can be produced for a cost in the $300 - $500 per kWh range, which for many applications has a three to five-year payback period. The cost is being rapidly reduced and is expected to reach $200 kWh with a year.

To commercialize the batteries, researchers plan to have a company operational by fall 2012 with the goal of breaking even within two years, Professor Banerjee said. The company will probably set up its pilot manufacturing facility in close proximity to City College, he added.
Media Contact
Ellis Simon P | 212-650-6460 E |

Ellis Simon | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>