Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CUNY Energy Institute Battery System Could Reduce Buildings' Electric Bills

09.05.2012
Researchers with City College-based Center Devise Method to Control Dendrite Formation in Safe, Low-Cost Zinc Anode Batteries
The CUNY Energy Institute, which has been developing innovative low-cost batteries that are safe, non-toxic, and reliable with fast discharge rates and high energy densities, announced that it has built an operating prototype zinc anode battery system. The Institute said large-scale commercialization of the battery would start later this year.

Zinc anode batteries offer an environmentally friendlier and less costly alternative to nickel cadmium batteries. In the longer term, they also could replace lead-acid batteries at the lower cost end of the market. However, the challenge of dendrite formation associated with zinc had to be addressed. Dendrites are crystalline structures that cause batteries to short out.

To prevent dendrite build-up, CUNY researchers developed a flow-assisted zinc anode battery with a sophisticated advanced battery management system (BMS) that controls the charge/discharge protocol. To demonstrate the new technology and its applications, which range from peak electricity demand reduction to grid-scale energy storage, they have assembled a 36 kilowatt-hour rechargeable battery system.

The system, housed in the basement of Steinman Hall on The City College of New York campus, consists of 36 individual one kWh nickel-zinc flow-assisted cells strung together and operated by the BMS. In peak electricity demand reduction, batteries charge during low usage periods, i.e. overnight, and discharge during peak-demand periods when surcharges for power usage are very high.

“This is affordable, rechargeable electricity storage made from cheap, non-toxic materials that are inherently safe,” said Dr. Sanjoy Banerjee, director of the CUNY Energy Institute and distinguished professor of engineering in CCNY’s Grove School of Engineering. “The entire Energy Institute has worked on these batteries – stacking electrodes, mounting terminals, connecting to the inverters – and they are going to be a game changer for the electric grid.”

The batteries are designed for more than 5,000 – 10,000 charge cycles and a useful life exceeding ten years. The demonstration system is being expanded currently to 100 kWh, with another 200 kWh to be installed later this year. At that point, it will be capable of meeting more than 30 percent of Steinman Hall’s peak-demand power needs, yielding savings of $6,000 or more per month.

Professor Banerjee sees initial applications for the batteries in industrial facilities and large, commercial properties. The nickel-cadmium (Ni-Cd) batteries that would be initially replaced are used in applications that range from backup power for server farms to very large starter motors. Other large-scale Ni-Cd applications include grid support, like a system in Alaska that deploys a 45 MW Ni-Cd battery array.

The CUNY Energy Institute’s zinc anode battery system can be produced for a cost in the $300 - $500 per kWh range, which for many applications has a three to five-year payback period. The cost is being rapidly reduced and is expected to reach $200 kWh with a year.

To commercialize the batteries, researchers plan to have a company operational by fall 2012 with the goal of breaking even within two years, Professor Banerjee said. The company will probably set up its pilot manufacturing facility in close proximity to City College, he added.
Media Contact
Ellis Simon P | 212-650-6460 E | esimon@ccny.cuny.edu

Ellis Simon | EurekAlert!
Further information:
http://www.ccny.cuny.edu

More articles from Power and Electrical Engineering:

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

nachricht In best circles: First integrated circuit from self-assembled polymer
19.02.2018 | Max-Planck-Institut für Polymerforschung

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>