Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crash sensor boosts safety in warehouses

29.04.2011
At the end of a long day on the job, the warehouse employee wants to deposit the last palettes quickly before heading home. With a little too much momentum he steers his forklift toward the shelf and collides with a shelf support.

This is an every- day situation in large warehouses in which employees often have to maneuver goods through the narrow aisles, often under time pressure. Even harmless-seeming collisions are not really safe though, because over time they may in fact destabilize the shelf supports. In the worst case, the high-rack storage can come crashing down – a serious hazard for the employees below.

This is why the supports must be routinely checked for any damage. Up until now, an employee has to inspect each shelf individually – a laborious and time-consuming process. A further drawback: If a support is damaged immediately after an inspection, it goes undetected until the next round. A more effective and reliable protection is afforded by a new monitoring system developed by researchers at the Fraunhofer Institute for Microelectronic Circuits and Systems IMS in Duisburg, in collaboration with IWS Handling GmbH.

With the aid of a network of wireless sensors, the condition of each individual support can be monitored around the clock. "Since DIN EN 15635 was introduced, the demands on the operation of shelf systems have increased significantly. Regular inspections have become indispensable as a result," according to Dr. Weiner, managing director at IWS Handling.

Typically, to protect them from collisions, the supports are fitted with a kind of air cushion designed to absorb the impact. "We have integrated sensors in this protective fitting that measure the pressure within the air cushion," explains Frederic Meyer, project manager at IMS. If an air cushion is collided with, the sensor registers the change in interior pressure and reports this via radio relay to a central control station. This is located in the warehouse manager's office. Repeaters positioned at several points throughout the warehouse receive the messages from the sensor nodes and smoothly pass these along to the control station.

All the warehouse manager needs to do is glance at the base station to know when and where the last collisions took place within the hall. The system automatically provides him or her a report of whether the impact was harmless, of medium strength or serious. While no immediate measures are required for light collisions, in the event of a category three incident the warehouse manager immediately will send an employee to the shelf in question.

Energy management played a central role in developing this new technology. "After all, the use of such a system only pays off if you aren't constantly having to replace the batteries in the sensors," Meyer adds. The researchers in Duisburg have configured the system so that the electronics spend most of their time in energy-saving sleep mode. Only when a fluctuation in pressure occurs do the sensor nodes "wake up" and switch to active status. At certain intervals, though – the settings can be varied individually – each sensor node sends a "sign of life" along with its current battery status to a repeater. This ensures that the failure of a signal node will not go unnoticed and is reported to the control station.

The scientists expect to have realized a first demonstrator model by the end of March, which they will then present at the Euro ID (April 5-7 in Berlin) and Sensor + Test (June 7-9 in Nuremberg) trade fairs. A field test is planned for a larger warehouse facility as well. The project is sponsored by the "Otto von Guericke" German Federation of Industrial Research Associations.

Frederic Meyer | EurekAlert!
Further information:
http://www.ims.fraunhofer.de

Further reports about: Crash Crash sensor IMS IWS Wireless sensors air cushion harmless-seeming collisions

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>