Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Crash sensor boosts safety in warehouses

At the end of a long day on the job, the warehouse employee wants to deposit the last palettes quickly before heading home. With a little too much momentum he steers his forklift toward the shelf and collides with a shelf support.

This is an every- day situation in large warehouses in which employees often have to maneuver goods through the narrow aisles, often under time pressure. Even harmless-seeming collisions are not really safe though, because over time they may in fact destabilize the shelf supports. In the worst case, the high-rack storage can come crashing down – a serious hazard for the employees below.

This is why the supports must be routinely checked for any damage. Up until now, an employee has to inspect each shelf individually – a laborious and time-consuming process. A further drawback: If a support is damaged immediately after an inspection, it goes undetected until the next round. A more effective and reliable protection is afforded by a new monitoring system developed by researchers at the Fraunhofer Institute for Microelectronic Circuits and Systems IMS in Duisburg, in collaboration with IWS Handling GmbH.

With the aid of a network of wireless sensors, the condition of each individual support can be monitored around the clock. "Since DIN EN 15635 was introduced, the demands on the operation of shelf systems have increased significantly. Regular inspections have become indispensable as a result," according to Dr. Weiner, managing director at IWS Handling.

Typically, to protect them from collisions, the supports are fitted with a kind of air cushion designed to absorb the impact. "We have integrated sensors in this protective fitting that measure the pressure within the air cushion," explains Frederic Meyer, project manager at IMS. If an air cushion is collided with, the sensor registers the change in interior pressure and reports this via radio relay to a central control station. This is located in the warehouse manager's office. Repeaters positioned at several points throughout the warehouse receive the messages from the sensor nodes and smoothly pass these along to the control station.

All the warehouse manager needs to do is glance at the base station to know when and where the last collisions took place within the hall. The system automatically provides him or her a report of whether the impact was harmless, of medium strength or serious. While no immediate measures are required for light collisions, in the event of a category three incident the warehouse manager immediately will send an employee to the shelf in question.

Energy management played a central role in developing this new technology. "After all, the use of such a system only pays off if you aren't constantly having to replace the batteries in the sensors," Meyer adds. The researchers in Duisburg have configured the system so that the electronics spend most of their time in energy-saving sleep mode. Only when a fluctuation in pressure occurs do the sensor nodes "wake up" and switch to active status. At certain intervals, though – the settings can be varied individually – each sensor node sends a "sign of life" along with its current battery status to a repeater. This ensures that the failure of a signal node will not go unnoticed and is reported to the control station.

The scientists expect to have realized a first demonstrator model by the end of March, which they will then present at the Euro ID (April 5-7 in Berlin) and Sensor + Test (June 7-9 in Nuremberg) trade fairs. A field test is planned for a larger warehouse facility as well. The project is sponsored by the "Otto von Guericke" German Federation of Industrial Research Associations.

Frederic Meyer | EurekAlert!
Further information:

Further reports about: Crash Crash sensor IMS IWS Wireless sensors air cushion harmless-seeming collisions

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>