Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crash-safe battery protection for electric cars

06.10.2011
Everyone is talking about electric drives, and the scientists from Fraunhofer are also working on them. Engineers have replaced a battery box for lithium-ion batteries with a lightweight component. Not only does the housing save weight and sustain no damage in an accident – for the first time ever, it can also be mass-produced.

If an electric car wants to be environmentally friendly it must weigh as little as possible, because when the light turns green every additional pound/kilogram must be accelerated with considerable energy expenditure. And the lighter the electric vehicle, the longer it can be on the road without having to be plugged back into a power outlet.


The battery housing made of lightweight component materials weighs only 35 kilograms (77.16 lbs) – 25 percent less than traditional solutions made of steel. (© Fraunhofer ICT)

To advance the symbiosis between electromobility and lightweight construction, engineers from the Fraunhofer Institute for Chemical Technology ICT in Pfinztal, Germany, are developing manufacturing concepts that have one goal – they want to gradually replace individual components in the vehicle with lightweight ones. “However, this cannot affect the stability or the safety of the passenger,“ said Manfred Reif, project manager in the joint project ”Fraunhofer System Research for Electromobility.”

The fact that this is possible is proven by the researchers with the Artega GT, a sports car that was modified into a prototype with an electric drive, where the electric motor is located in the rear. The experts, along with colleagues from the Fraunhofer Institutes for Mechanics of Materials IWM, for Structural Durability and System Reliability LBF and for High-Speed Dynamics, Ernst-Mach Institut EMI, have developed a mass-production-ready, crash-safe battery housing that meets strict requirements. The battery housing that surrounds the battery that weighs 340 kilograms (749.57 lbs.) only weighs 35 kilograms (77.16 lbs.). “Traditional solutions made of steel weigh up to 25 percent more,“ said Reif. “The battery housing can withstand a crash, assuming a ten-fold gravitational acceleration.“ And even if a sharp object collides with the housing at 60 km/h (45mph), the highly sensitive battery on the inside remains intact. In addition, the 16 lithium-ion modules are protected from humidity, and a semi-permeable membrane to equalize pressure also guarantees that the batteries are able to “breathe.“

What make the new battery protection so special are the new fiber-reinforced composite materials. Currently, steel components are welded together to make these boxes. “However, it must be possible to mass-produce the lightweight components,“ explained Reif. “Up to now, this has not been possible in this form.“ Fiber composites have been used for a long time in the manufacturing of airplanes; however, only a few hundred are built every year. But as far as cars are concerned, this number could be several thousand daily, and mass production involves completely different requirements as far as materials are concerned. For this reason, the scientists have developed a special process chain with cycle times that make the production of high unit counts possible. “The process chain is designed so that many steps can be run simultaneously,“ said Reif. For example, the plastic is heated up parallel to the production step, and elements are prepared that ensure load and tensile strength or the attachment to the storage in the rear of the Artega. This includes, for example, directionally oriented fiberglass structures or custom-made metal inserts. All the individual components are then assembled and pressed together in a “one-shot process.“

The scientists will be presenting the housing at the 2011 Composites Europe Fair in Stuttgart (Hall 4, Booth D03). Currently, the battery box must still be secured with transverse attachments in the rear of the Artega; however, the experts working with Prof. Dr.-Ing. Frank Henning are already looking at a lightweight replacement for that.

Manfred Reif | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2010-2011/21/battery-protection.jsp

More articles from Power and Electrical Engineering:

nachricht Electron sandwich doubles thermoelectric performance
20.06.2018 | Hokkaido University

nachricht Agrophotovoltaics Goes Global: from Chile to Vietnam
20.06.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

Innovative autonomous system for identifying schools of fish

20.06.2018 | Information Technology

Controlling robots with brainwaves and hand gestures

20.06.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>