Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cradle turns smartphone into handheld biosensor

24.05.2013
Researchers and physicians in the field could soon run on-the-spot tests for environmental toxins, medical diagnostics, food safety and more with their smartphones.

University of Illinois at Urbana-Champaign researchers have developed a cradle and app for the iPhone that uses the phone’s built-in camera and processing power as a biosensor to detect toxins, proteins, bacteria, viruses and other molecules.

Having such sensitive biosensing capabilities in the field could enable on-the-spot tracking of groundwater contamination, combine the phone’s GPS data with biosensing data to map the spread of pathogens, or provide immediate and inexpensive medical diagnostic tests in field clinics or contaminant checks in the food processing and distribution chain.

“We’re interested in biodetection that needs to be performed outside of the laboratory,” said team leader Brian Cunningham, a professor of electrical and computer engineering and of bioengineering at the U. of I. “Smartphones are making a big impact on our society – the way we get our information, the way we communicate. And they have really powerful computing capability and imaging. A lot of medical conditions might be monitored very inexpensively and non-invasively using mobile platforms like phones. They can detect molecular things, like pathogens, disease biomarkers or DNA, things that are currently only done in big diagnostic labs with lots of expense and large volumes of blood.”

The wedge-shaped cradle contains a series of optical components – lenses and filters – found in much larger and more expensive laboratory devices. The cradle holds the phone’s camera in alignment with the optical components.

At the heart of the biosensor is a photonic crystal. A photonic crystal is like a mirror that only reflects one wavelength of light while the rest of the spectrum passes through. When anything biological attaches to the photonic crystal – such as protein, cells, pathogens or DNA – the reflected color will shift from a shorter wavelength to a longer wavelength.

For the handheld iPhone biosensor, a normal microscope slide is coated with the photonic material. The slide is primed to react to a specific target molecule. The photonic crystal slide is inserted into a slot on the cradle and the spectrum measured. Its reflecting wavelength shows up as a black gap in the spectrum. After exposure to the test sample, the spectrum is re-measured. The degree of shift in the reflected wavelength tells the app how much of the target molecule is in the sample. See a video of the app in action at http://www.youtube.com/watch?v=Kh7MUjIYuyw.

The entire test takes only a few minutes; the app walks the user through the process step by step. Although the cradle holds only about $200 of optical components, it performs as accurately as a large $50,000 spectrophotometer in the laboratory. So now, the device is not only portable, but also affordable for fieldwork in developing nations.

In a paper published in the journal Lab on a Chip, the team demonstrated sensing of an immune system protein, but the slide could be primed for any type of biological molecule or cell type. The researchers are working to improve the manufacturing process for the iPhone cradle and are working on a cradle for Android phones as well. They hope to begin making the cradles available next year.

Cunningham’s group is now collaborating with other groups across campus at the U. of I. to explore applications for the iPhone biosensor. The group recently received a grant from the National Science Foundation to expand the range of biological experiments that can be performed with the phone, in collaboration with Steven Lumetta, a professor of electrical and computer engineering and of computer science at the U. of I. They are also are also working with food science and human nutrition professor Juan Andrade to develop a fast biosensor test for iron deficiency and vitamin A deficiency in expectant mothers and children.

In addition, Cunningham’s team is working on biosensing tests that could be performed in the field to detect toxins in harvested corn and soybeans, and to detect pathogens in food and water.

“It’s our goal to expand the range of biological experiments that can be performed with a phone and its camera being used as a spectrometer,” Cunningham said. “In our first paper, we showed the ability to use a photonic crystal biosensor, but in our NSF grant, we’re creating a multi-mode biosensor. We’ll use the phone and one cradle to perform four of the most widely used biosensing assays that are available.”

Cunningham also is affiliated with the Institute for Genomic Biology, the Beckman Institute for Advanced Science and Technology, and the Micro and Nanotechnology Laboratory, all at the U. of I.

Liz Ahlberg | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Power and Electrical Engineering:

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>