Counterfeit euros are detected with an optical mouse

The sensor, incorporated in optical computer mice, is usually used to guide cursor movement, but can also be used as a counterfeit coin detector. This has been demonstrated by a prototype developed by computer engineers from the UdL, whose details can be consulted openly and for free in the scientific journal Sensors.

“We have implemented a counterfeit two-euro coin detection system by comparing patterns obtained with an optical mouse sensor”, Marcel Tresanchez, one of the authors of the study, explains to SINC. According to the European Commission, 79% of counterfeit coins discovered in Europe in 2008 were two-euro coins.

The coin is placed in a positioning device and is rotated to detect forgeries. The sensor, situated a few millimetres away, is employed to capture images from the common face of the two-euro coins (all have a map of Europe engraved on one side, and a country-specific design on the other). The images are then compared with reference images obtained from genuine coins, using an algorithm also developed by the Catalan team.

“The same operation could be performed with a webcam, for example, but the advantage of these sensors is their small size, low cost and the angle of vision reduced to such an extent that the raised image of coins can easily be captured”, Tresanchez points out.

The researcher does explain that not just any optical mouse sensor will work, as images must be captured in real time, with a minimum resolution of 15×15 pixels (the team used 30×30 pixels). It is also better to use an LED- or infrared-based sensor, and not laser technology, as these[sic] provide images that are too wide.

The results of the study show that this system, devised to complement forgery identification techniques, allows for the detection of counterfeit coins better than any layperson could, although at a similar level to that of an expert trained to do so.

The authors have also applied the same method to design an “encoder” or rotating codifier (which counts the angular movement of an axis) using the optical mouse sensor.

References:

Marcel Tresanchez, Tomàs Pallejà, Mercè Teixidó y Jordi Palacín. “Using the Optical Mouse Sensor as a Two-Euro Counterfeit Coin Detector”. Sensors 9(9): 7083-7096, 2009 (Open Access).

Media Contact

SINC EurekAlert!

More Information:

http://www.plataformasinc.es

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors