Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counterfeit euros are detected with an optical mouse

19.11.2009
The sensor of some optical mice can be used to easily and cheaply detect counterfeit euros, according to a study published by researchers of the University of Lleida (UdL) in the scientific journal Sensors. Almost 80% of counterfeit coins discovered in Europe in 2008 were two-euro coins.

The sensor, incorporated in optical computer mice, is usually used to guide cursor movement, but can also be used as a counterfeit coin detector. This has been demonstrated by a prototype developed by computer engineers from the UdL, whose details can be consulted openly and for free in the scientific journal Sensors.

"We have implemented a counterfeit two-euro coin detection system by comparing patterns obtained with an optical mouse sensor", Marcel Tresanchez, one of the authors of the study, explains to SINC. According to the European Commission, 79% of counterfeit coins discovered in Europe in 2008 were two-euro coins.

The coin is placed in a positioning device and is rotated to detect forgeries. The sensor, situated a few millimetres away, is employed to capture images from the common face of the two-euro coins (all have a map of Europe engraved on one side, and a country-specific design on the other). The images are then compared with reference images obtained from genuine coins, using an algorithm also developed by the Catalan team.

"The same operation could be performed with a webcam, for example, but the advantage of these sensors is their small size, low cost and the angle of vision reduced to such an extent that the raised image of coins can easily be captured", Tresanchez points out.

The researcher does explain that not just any optical mouse sensor will work, as images must be captured in real time, with a minimum resolution of 15x15 pixels (the team used 30x30 pixels). It is also better to use an LED- or infrared-based sensor, and not laser technology, as these[sic] provide images that are too wide.

The results of the study show that this system, devised to complement forgery identification techniques, allows for the detection of counterfeit coins better than any layperson could, although at a similar level to that of an expert trained to do so.

The authors have also applied the same method to design an "encoder" or rotating codifier (which counts the angular movement of an axis) using the optical mouse sensor.

References:

Marcel Tresanchez, Tomàs Pallejà, Mercè Teixidó y Jordi Palacín. "Using the Optical Mouse Sensor as a Two-Euro Counterfeit Coin Detector". Sensors 9(9): 7083-7096, 2009 (Open Access).

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>