Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cost-efficient production process and homogeneous luminosity for OLEDs thanks to micro-scale conductor paths

18.11.2009
The trend in lighting technology is towards the large-area and decorative illumination made possible by organic light-emitting diodes (OLEDs).

Analysts at NanoMarkets forecast a worldwide market volume of over $2.9 billion for 2012, with sales increasing to around $5.9 billion by 2014. The lighting industry is now looking for economic production techniques for organic lighting.

In cooperation with Philips, the Fraunhofer Institute for Laser Technology ILT is developing an innovative, cost-efficient process for applying conductor paths to OLEDs.

Organic light-emitting diodes are highly efficient light sources based on organic materials. They achieve high luminous intensity while consuming little energy. OLEDs consist of one or several active organic layers which are energized by two large-area electrodes. The initiated current flow leads to electron-hole recombinations in the organic layer. This produces photons which radiate into the half-space through the conductive, transparent anode - consisting of indium tin oxide (ITO) or similar materials.

To distribute the electrical energy evenly over the entire surface of the OLEDs, metallic conductor paths are applied to the ITO layer. The size of the conductor paths plays an important role here: if they are too wide the paths can affect the luminous homogeneity of the light source. In addition to reducing manufacturing costs for OLEDs, the lighting industry is also very keen to produce tiny geometries. A process is required with which narrow metallic conductor paths can be produced efficiently, resulting in savings of energy and resources.

Up to now the metallic conductor material has been applied to the surface of the OLEDs in an energy-intensive high-vacuum sputter process, in which an atomic layer is deposited over the entire surface of the substrate in a high vacuum and removed again using a photolithographic method in the areas where the conductor paths are not required. This subtractive process is very expensive owing to the effort involved in applying and then removing the metal layer not required, which involves a material loss of up to 90%. Furthermore, the photolithographic removal process is environmentally detrimental as the etching solution containing metals has to be disposed of after use. The conventionally produced conductor paths have a width of up to 120 µm and are therefore optically disruptive to the homogeneous luminosity of the OLEDs.

Additive process will reduce costs and the burden on the environment

The Fraunhofer ILT is now developing a laser technique to apply micro-scale conductor paths for the industrial partner Philips. A mask foil is placed on the surface of the conductor which represents the negative to the conductor path geometry later required. This is then covered by a donor foil whose material will constitute the conductor path, for example aluminum or copper. The assembly is fixed in place and hit with laser radiation traveling at a speed of up to 2.5 m/s along the mask geometry. A mixture of melt drops and vapor forms, which is transferred from the donor foil to the substrate. The solidified mixture produces the conductor path, whose geometry is determined by the mask. As the process takes place in the ambient atmosphere an expensive process chamber is not required. There is no material loss because the residual material of the donor foil can be re-used.

"This enables us to produce narrow metallic paths with adjustable widths between 40 and 100 µm. They exhibit variable thicknesses between 3 and 15 µm and a resistance of

Conductor paths are used wherever electrical energy needs to be conducted over non-conductive surfaces made of glass, silicon or other materials. Further applications derive from the innovative process, including heated windows in cars and other vehicles as well the production of semiconductors for use in solar cells. Considerable demand exists in these sectors for micro-scale conductor paths because wide conductor paths restrict vision in motor vehicles and cause shading which reduces the efficiency of photovoltaic systems.

Contacts at Fraunhofer ILT
Our experts will be pleased to answer any questions:
Dipl.-Ing. Christian Vedder
Surface Engineering Department
Phone +49 241 8906-378
christian.vedder@ilt.fraunhofer.de
Dr. Konrad Wissenbach
Head of Surface Engineering Department
Phone +49 241 8906-147
konrad.wissenbach@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.ilt.fraunhofer.de

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>