Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cost efficient Diode Lasers for Industrial Applications

15.04.2016

The »Brilliant Industrial Diode Lasers« (BRIDLE) project has been finished successfully after 42 months of intense research activities. BRIDLE was made possible by funding from the European Commission. The seven project partners finished their work at the end of February 2016. The project was coordinated by »DILAS Diodenlaser GmbH« (Germany), the project partners are located in Germany, UK, Switzerland, France and Finland. BRIDLE targeted a major increase in the brightness achievable in direct diode laser systems, based on advances in diode laser and beam -combining technology. Throughout, the highest conversion was sought as was compatibility with low cost, volume manufacture.

Seven partners for various scientific issues


DWDM prototype consisting of actively cooled DFB mini-bars.

Fraunhofer ILT, Aachen.


Mounting of individually addressable diode lasers with rear and front facet access for CBC.

© CNRS-IO, Palaiseau / Fraunhofer ILT, Aachen.

Design and technological development of high performance diode lasers was performed by three partners within BRIDLE. First, the Ferdinand-Braun-Institut für Höchstfrequenztechnik im Forschungsverbund Berlin e.V. (FBH) developed novel epitaxial designs and process technology.

Those developments enabled the use of broad area mini bars with a narrow stripe width of only 30 µm to operate with a brightness that is increased by at least a factor of two in comparison with state of the art chips with a 100 µm stripe width. Furthermore, highly brilliant narrow-stripe DFB diode lasers with monolithically-integrated surface gratings were developed and optimized to simultaneously deliver narrow spectrum (< 1nm), high power (5W), high efficiency (50%) within a low beam parameter product (< 2mm-mrad) for the first time.

... more about:
»Diode »Fraunhofer-Institut »ILT »Lasertechnik »lasers

For coherent coupling experiments, monolithically grating-stabilized tapered diode lasers were developed, with record (54%) conversion efficiency. Second, ridge waveguide diode lasers for coherent coupling experiments were developed by Modulight Inc., which deliver an output power of 1 W per emitter. Finally, design optimization was supported through detailed simulation work performed by University of Nottingham (UNott).

Based on the high brightness diode laser mini bars developed within the BRIDLE project, DILAS was able to simplify its well-known T-bar concept for 105 µm fibre coupling. Furthermore DILAS could increase the optical output power up to 300 W ex 100 µm. The modules wavelength’can be stabilized and used for dense wavelength multiplexing to further increase output power and brightness. The assembly process is fully automated.

Fraunhofer Institute for Laser Technology ILT analyzed and compared different techniques for dense wavelength multiplexing. These techniques include different approaches based on surface gratings, simultaneous wavelength stabilization and multiplexing by use of dielectric filters and VBGs as well as DWDM of wavelength chirped DFB diode lasers by dielectric filters. Filters from different international manufacturers were tested thoroughly. For the first time, Fraunhofer ILT has developed concepts which can be used to implement and test compact modules in the medium power range of 10 W to 100 W output power, with a fiber having a core diameter of 35 µm and a numerical aperture of 0.2. 46 W were realized experimentally. A 7:1 fiber combiner (35/105 µm) was developed for further power scaling.

Centre National de la Recherche Scientifique/Institut d’Optique (CNRS-IO) demonstrated a new architecture for passive coherent combining of diode laser with ridge lasers (delivered by Modulight) and tapered lasers (delivered by FBH). The set-up is based on the separation of the phase-locking stage, which takes place in an external cavity on the rear side of the lasers, and the beam combining stage ,which is achieved outside the cavity on their front side. This configuration demonstrates successively a combined power up to 7.5 W in a single beam from a bar of five high-brightness emitters, using a specifically designed diffractive combiner. Furthermore, the active coherent combining of five tapered amplifiers achieved a power of more than 11 W with a combining efficiency of 76%.

The University of Nottingham developed software tools that enable the investigation of coupling between external optics and the diode laser itself. These tools can be used to better understand coherent coupling, wavelength stabilization or parasitic back reflections. UNott developed a dynamic laser simulation tool for CBC diode laser systems. This tool is used in conjunction with external cavity models developed at CNRS-IO to investigate the nature and dynamics of the phase locking mechanisms in CBC laser systems. Furthermore, UNott’s laser simulation tool Speclase was coupled to external optical design software (ZEMAX®) for external cavity simulations at the subsystem level.

Industrial applications of the developed prototypes are investigated by Bystronic Laser AG and Fraunhofer ILT. For instance, lasers manufactured by DILAS are used for Selective Laser Melting of metals at Fraunhofer ILT.

For more information visit the BRIDLE project website ( www.bridle.eu )

Weitere Informationen:

http://s.fhg.de/svD

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: Diode Fraunhofer-Institut ILT Lasertechnik lasers

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>