Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cost efficient Diode Lasers for Industrial Applications

15.04.2016

The »Brilliant Industrial Diode Lasers« (BRIDLE) project has been finished successfully after 42 months of intense research activities. BRIDLE was made possible by funding from the European Commission. The seven project partners finished their work at the end of February 2016. The project was coordinated by »DILAS Diodenlaser GmbH« (Germany), the project partners are located in Germany, UK, Switzerland, France and Finland. BRIDLE targeted a major increase in the brightness achievable in direct diode laser systems, based on advances in diode laser and beam -combining technology. Throughout, the highest conversion was sought as was compatibility with low cost, volume manufacture.

Seven partners for various scientific issues


DWDM prototype consisting of actively cooled DFB mini-bars.

Fraunhofer ILT, Aachen.


Mounting of individually addressable diode lasers with rear and front facet access for CBC.

© CNRS-IO, Palaiseau / Fraunhofer ILT, Aachen.

Design and technological development of high performance diode lasers was performed by three partners within BRIDLE. First, the Ferdinand-Braun-Institut für Höchstfrequenztechnik im Forschungsverbund Berlin e.V. (FBH) developed novel epitaxial designs and process technology.

Those developments enabled the use of broad area mini bars with a narrow stripe width of only 30 µm to operate with a brightness that is increased by at least a factor of two in comparison with state of the art chips with a 100 µm stripe width. Furthermore, highly brilliant narrow-stripe DFB diode lasers with monolithically-integrated surface gratings were developed and optimized to simultaneously deliver narrow spectrum (< 1nm), high power (5W), high efficiency (50%) within a low beam parameter product (< 2mm-mrad) for the first time.

... more about:
»Diode »Fraunhofer-Institut »ILT »Lasertechnik »lasers

For coherent coupling experiments, monolithically grating-stabilized tapered diode lasers were developed, with record (54%) conversion efficiency. Second, ridge waveguide diode lasers for coherent coupling experiments were developed by Modulight Inc., which deliver an output power of 1 W per emitter. Finally, design optimization was supported through detailed simulation work performed by University of Nottingham (UNott).

Based on the high brightness diode laser mini bars developed within the BRIDLE project, DILAS was able to simplify its well-known T-bar concept for 105 µm fibre coupling. Furthermore DILAS could increase the optical output power up to 300 W ex 100 µm. The modules wavelength’can be stabilized and used for dense wavelength multiplexing to further increase output power and brightness. The assembly process is fully automated.

Fraunhofer Institute for Laser Technology ILT analyzed and compared different techniques for dense wavelength multiplexing. These techniques include different approaches based on surface gratings, simultaneous wavelength stabilization and multiplexing by use of dielectric filters and VBGs as well as DWDM of wavelength chirped DFB diode lasers by dielectric filters. Filters from different international manufacturers were tested thoroughly. For the first time, Fraunhofer ILT has developed concepts which can be used to implement and test compact modules in the medium power range of 10 W to 100 W output power, with a fiber having a core diameter of 35 µm and a numerical aperture of 0.2. 46 W were realized experimentally. A 7:1 fiber combiner (35/105 µm) was developed for further power scaling.

Centre National de la Recherche Scientifique/Institut d’Optique (CNRS-IO) demonstrated a new architecture for passive coherent combining of diode laser with ridge lasers (delivered by Modulight) and tapered lasers (delivered by FBH). The set-up is based on the separation of the phase-locking stage, which takes place in an external cavity on the rear side of the lasers, and the beam combining stage ,which is achieved outside the cavity on their front side. This configuration demonstrates successively a combined power up to 7.5 W in a single beam from a bar of five high-brightness emitters, using a specifically designed diffractive combiner. Furthermore, the active coherent combining of five tapered amplifiers achieved a power of more than 11 W with a combining efficiency of 76%.

The University of Nottingham developed software tools that enable the investigation of coupling between external optics and the diode laser itself. These tools can be used to better understand coherent coupling, wavelength stabilization or parasitic back reflections. UNott developed a dynamic laser simulation tool for CBC diode laser systems. This tool is used in conjunction with external cavity models developed at CNRS-IO to investigate the nature and dynamics of the phase locking mechanisms in CBC laser systems. Furthermore, UNott’s laser simulation tool Speclase was coupled to external optical design software (ZEMAX®) for external cavity simulations at the subsystem level.

Industrial applications of the developed prototypes are investigated by Bystronic Laser AG and Fraunhofer ILT. For instance, lasers manufactured by DILAS are used for Selective Laser Melting of metals at Fraunhofer ILT.

For more information visit the BRIDLE project website ( www.bridle.eu )

Weitere Informationen:

http://s.fhg.de/svD

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: Diode Fraunhofer-Institut ILT Lasertechnik lasers

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>