Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell’s Robotic Ranger Smashes World Record by Strolling 40.5 Miles – at a Fleet 1.3 Mph Pace

11.05.2011
Pulling an all-nighter and then some, the Cornell robot Ranger set a new world record May 2 by walking 40.5 miles on a single battery charge without stopping or human hand-holding.

Ranger, a bipedal robot built and programmed in Cornell’s Biorobotics and Locomotion lab, led by Andy Ruina, professor of mechanical and aerospace engineering, started walking on Cornell’s Barton Hall track on May 1 just after 2 p.m., and then came to an abrupt stop at on May 2 at 9 p.m., after 30 hours, 49 minutes and 2 seconds of nonstop walking. It covered the 307.75 laps (0.13 miles per lap) at a 1.3 mph amble.

To warm up for the feat, Ranger – donating a participation fee – walked 30 laps in the American Cancer Society’s Relay for Life charity event at Cornell University on April 30.

Ranger’s previous record was 14.3 miles, set last July. Before that, Boston Dynamics’ Bigdog, a four-legged, all-terrain robot, trotted 12.8 miles without refueling. The new Cornell goal was to have a robot walk a full marathon (26.2 miles) without recharge, which Ranger did in just over 20 hours – and then it kept going … and going. In contrast, at the much-publicized world’s first robot marathon in Osaka, Japan in February, robots were repeatedly recharged.

“We were getting pretty tired by the end,” said Violeta Juarez Crow ’12, an electrical engineering major who steered the robot for dozens of laps around the Barton track.

The overall goal of the National Science Foundation-funded research project is to understand walking by reinventing it, said Ruina.

Ranger has six small on-board computers executing about 10,000 lines of computer code. The programs run in a repeating loop every 1/500th of a second. The robot also has dozens of electrical and mechanical sensors. The electronics used 4.7 watts.

“It took a bit of effort to keep the computation, sensing and communication energy use low,” said Jason Cortell, a research support specialist who designed most of the electronics on Ranger. “We hope to use what we have developed for more complex robots.”

The robot’s total weight is 22 pounds, of which 6 pounds are the lithium-ion batteries that power the electronics and the motors. One of these motors extends the outer ankles, another extends the inner ankles and a third swings the legs. A fourth smaller motor twists the inner legs for steering. The motors consume an additional 11.3 watts. At 16 watts total, the specific cost of transport (COT, energy per unit weight per unit distance) was a relatively stingy 0.28 joules per newton-meter. Most robots use much more energy (with a typical COT of 1.5 or more), Ruina said. Ranger still isn’t as efficient as a typical human, who walks with a COT of about 0.2.

Ranger’s present COT of 0.28 is less than its COT last summer of 0.49.

“We’ve improved the control in various ways since then,” said Pranav Bhounsule, the graduate student in charge of the control system. “But I think we can still do better.”

While most legged robots achieve stability by carefully controlling all of the joint angles in their bodies, Ranger achieves its low energy use by, as much as possible, letting the legs swing as they will, Ruina explained. Also, most bipedal robots stand on flat feet. Ranger can’t stand upright at all; instead, it balances by falling and catching itself at each step. The trick is to make the catch at the right time and place.

Ruina said: “Our challenge is to lower the energy use while still maintaining balance. The achievement is to have gone 186,076 steps on 5 cents worth of electricity, and without falling down. … If we try for another record, it will be with automatic steering.”

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>