Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copper-nickel nanowires could be perfect fit for printable electronics

30.05.2012
While the Statue of Liberty and old pennies may continue to turn green, printed electronics and media screens made of copper nanowires will always keep their original color.

Duke University chemists created a new set of flexible, electrically conductive nanowires from thin strands of copper atoms mixed with nickel. The copper-nickel nanowires, in the form of a film, conduct electricity even under conditions that break down the transfer of electrons in plain silver and copper nanowires, a new study shows.

Because films made with copper-nickel nanowires are stable and are relatively inexpensive to create, they are an attractive option to use in printed electronics, products like electronic paper, smart packaging and interactive clothing, said Benjamin Wiley, an assistant professor of chemistry at Duke. His team describes the new nanowires in a NanoLetters paper published online May 29.

The new copper-nickel nanowires are the latest nanomaterial Wiley's lab has developed as a possible low-cost alternative to indium tin oxide, or ITO. This material is coated on glass to form the transparent conductive layer in the display screens of cell phones, e-readers and iPads.

Indium, at $600 - $800 per kilogram, is an expensive rare-earth element. Most of it is mined and exported from China, which is reducing exports, causing indium's price to increase. Indium tin oxide is deposited as a vapor in a relatively slow, expensive coating process, adding to its cost. And the film is brittle, which is a major reason the signature pads at grocery store checkout lines eventually fail and why there is not yet a flexible, rollable iPad.

Last year, Wiley's lab created copper nanowire films that can be deposited from a liquid in a fast, inexpensive coating process. These conductive films are much more flexible than the current ITO film. Copper is also one-thousand times more abundant and one-hundred times cheaper than indium. One problem with copper nanowire films, however, is that they have an orange tint that would not be desirable in a display screen. The copper-based films also oxidize gradually when exposed to air, suffering from the same chemical reaction that turns the Statue of Liberty or an old penny green, Wiley said.

Nickels, however, rarely turn green. Inspired by the U.S. five-cent piece, Wiley wondered if he could prevent oxidation of the copper nanowires by adding nickel. He and his graduate student, Aaron Rathmell, developed a method of mixing nickel into the copper nanowires by heating them in a nickel salt solution.

"Within a few minutes, the nanowires become much more grey in color," Wiley said.

Rathmell and Wiley then baked the new nanowires at various temperatures to test how long they conducted electricity and resisted oxidation. The tests show that the copper-nickel nanowire films would have to sit in air at room temperature for 400 years before losing 50 percent of their electrical conductivity. Silver nanowires would lose half of their conductivity in 36 months under the same conditions. Plain copper nanowires would last only 3 months.

While the copper-nickel nanowires stack up against silver and copper alone, they aren't going to replace indium-tin-oxide in flat-panel displays any time soon, Wiley said, explaining that, for films with similar transparency, copper-nickel nanowire films cannot yet conduct the same amount of electricity as ITO. "Instead, we're currently focusing on applications where ITO can't go, like printed electronics," he said.

The greater stability of copper-nickel nanowires makes them a better alternative to both copper and silver for applications that require a stable level of electrical conductivity for more than a few years, which is important for certain printed electronics applications, Wiley said.

He explained that printed electronics combine conductive or electronically active inks with the printing processes that make magazines, consumer packaging and clothing designs. The low cost and high speed of these printing processes make them attractive for the production of solar cells, LEDs, plastic packaging and clothing.

A Durham, NC startup company, NanoForge Corp., which Wiley co-founded has begun manufacturing copper-nickel nanowires to test in these and other potential applications.

Citation:

"Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks'" Rathmell, A. R., Nguyen, M., Chi, M. and Wiley, B. J. NanoLetters, May 29, 2012. DOI: 10.1021/nl301168r

Ashley Yeager | EurekAlert!
Further information:
http://www.duke.edu

More articles from Power and Electrical Engineering:

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>