Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooler, Smaller, Fuel Cells Goal of UIC Researchers

14.06.2011
Fuel cells that use hydrogen or methane to generate electricity in chemical reactions while shedding only harmless byproducts like water are dream products for engineers, environmentalists and business leaders searching for clean, alternative ways to power tomorrow's vehicles.

While high hurdles stand before the cheap manufacturing of fuel cells, engineers and scientists at the University of Illinois at Chicago and nearby Argonne National Laboratory are starting a tightly focused research project to develop solid oxide fuel cells that may meet this goal.

"Solid oxide fuel cells offer the potential to scale down to very small dimensions," said Christos Takoudis, professor of bio- and chemical engineering at UIC, and lead investigator in a new $475,000 National Science Foundation grant to investigate ways to synthesize and characterize this type of fuel cell in a temperature range lower than what most currently operate.

SOFCs oxidize fuels by electrochemical conversion to create electricity, using a solid oxide as the electrolyte between an anode and cathode circuit. While their small size and solid state are attractive attributes, the higher operating temperatures that SOFCs' need -- currently as high as 1,800 degrees Fahrenheit -- are a big drawback.

Takoudis and his colleagues hope they can lower the operating temperatures to what is considered the "intermediate range" of between 1,100 and 1,500 degrees.

They also want to see if such fuel cells can be created at the "nano" level, measuring thickness in mere single-digit layers of atoms.

"We're trying to come up with new materials and processes to make these fuel cells very efficient at lower temperatures. Material and design demands for higher temperatures are much more severe and require additional precautionary measures," Takoudis said.

A key research focus is how well the main elements -- the anode, electrolyte and cathode -- work at interface junctions and what contamination problems exist, if any.

"As dimensions shrink, it becomes even more important, because the actual contact area is much greater with respect to the total volume than it is in bigger systems," Takoudis said.

UIC researchers will grow the materials to test as potential solid anodes, cathodes and electrolytes for their SOFCs, and then use Takoudis' lab and Argonne's Advanced Photon Source for a close probe of the materials as they generate electricity.

Jeffrey Miller, leader of Argonne's heterogeneous catalysis group, will oversee that part of the work. Other project investigators working with Takoudis include UIC engineering adjunct professors Gregory Jursich and Alan Zdunek, who will study the process of atomic layer and chemical vapor deposition methods to create fuel cell components and ways to maximize efficiency. Robert Klie, UIC associate professor of physics, will supervise electron microscopy study and analysis of material interfaces.

Creation of microscopic-sized, cooler-operating, highly efficient solid oxide fuel cells may open up a world of possible applications that offer the twin benefits of being ecologically benign and cheap.

"Today's cost of fuel cells is prohibitive," Takoudis said. "Our group wants to push the technology envelope to help make the costs reasonable and create a power source that does little harm to the environment."

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>