Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooler, Smaller, Fuel Cells Goal of UIC Researchers

14.06.2011
Fuel cells that use hydrogen or methane to generate electricity in chemical reactions while shedding only harmless byproducts like water are dream products for engineers, environmentalists and business leaders searching for clean, alternative ways to power tomorrow's vehicles.

While high hurdles stand before the cheap manufacturing of fuel cells, engineers and scientists at the University of Illinois at Chicago and nearby Argonne National Laboratory are starting a tightly focused research project to develop solid oxide fuel cells that may meet this goal.

"Solid oxide fuel cells offer the potential to scale down to very small dimensions," said Christos Takoudis, professor of bio- and chemical engineering at UIC, and lead investigator in a new $475,000 National Science Foundation grant to investigate ways to synthesize and characterize this type of fuel cell in a temperature range lower than what most currently operate.

SOFCs oxidize fuels by electrochemical conversion to create electricity, using a solid oxide as the electrolyte between an anode and cathode circuit. While their small size and solid state are attractive attributes, the higher operating temperatures that SOFCs' need -- currently as high as 1,800 degrees Fahrenheit -- are a big drawback.

Takoudis and his colleagues hope they can lower the operating temperatures to what is considered the "intermediate range" of between 1,100 and 1,500 degrees.

They also want to see if such fuel cells can be created at the "nano" level, measuring thickness in mere single-digit layers of atoms.

"We're trying to come up with new materials and processes to make these fuel cells very efficient at lower temperatures. Material and design demands for higher temperatures are much more severe and require additional precautionary measures," Takoudis said.

A key research focus is how well the main elements -- the anode, electrolyte and cathode -- work at interface junctions and what contamination problems exist, if any.

"As dimensions shrink, it becomes even more important, because the actual contact area is much greater with respect to the total volume than it is in bigger systems," Takoudis said.

UIC researchers will grow the materials to test as potential solid anodes, cathodes and electrolytes for their SOFCs, and then use Takoudis' lab and Argonne's Advanced Photon Source for a close probe of the materials as they generate electricity.

Jeffrey Miller, leader of Argonne's heterogeneous catalysis group, will oversee that part of the work. Other project investigators working with Takoudis include UIC engineering adjunct professors Gregory Jursich and Alan Zdunek, who will study the process of atomic layer and chemical vapor deposition methods to create fuel cell components and ways to maximize efficiency. Robert Klie, UIC associate professor of physics, will supervise electron microscopy study and analysis of material interfaces.

Creation of microscopic-sized, cooler-operating, highly efficient solid oxide fuel cells may open up a world of possible applications that offer the twin benefits of being ecologically benign and cheap.

"Today's cost of fuel cells is prohibitive," Takoudis said. "Our group wants to push the technology envelope to help make the costs reasonable and create a power source that does little harm to the environment."

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Power and Electrical Engineering:

nachricht Perovskite-silicon solar cell research collaboration hits 25.2% efficiency
15.06.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Second heat source optimises heat pump system
12.06.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New material for splitting water

19.06.2018 | Physics and Astronomy

Cementless fly ash binder makes concrete 'green'

19.06.2018 | Materials Sciences

Overdosing on Calcium

19.06.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>