Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Connecting dead ends increases power grid stability

10.06.2014

Climate change mitigation strategies such as the German Energiewende require linking vast numbers of new power generation facilities to the grid.

As the input from many renewable sources is rather volatile, depending on how much the wind blows or the sun shines, there’s a higher risk of local power instabilities and eventually blackouts. Scientists from the Potsdam Institute for Climate Impact Research (PIK) now employed a novel concept from nonlinear systems analysis called basin stability to tackle this challenge. They found that connecting dead ends can significantly increase power grid stability. The findings are confirmed by a case study of the Scandinavian power system.

“The cheapest and thus widespread way to implement new generators into a high-voltage power grid is by simply adding single connections, like creating dead-end streets in a road network,” says Peter J. Menck, lead author of the study published in Nature Communications. To test the resulting system’s stability, the scientists simulated large perturbations in a standard electrical engineering model. “We found that in the power grid nodes close to the dead-end connections, the ability to withstand perturbations is largely reduced,” Menck says.

“Yet it turned out that this can be easily repaired by judiciously adding just a few transmission lines,” Menck says. Apparently, the provision of alternative routes in the network should allow for a dispersion of perturbation effects. Thereby, technical protection mechanisms at the different nodes of the grid can deal with problems, while dead ends make the effects culminate at single points of the network.

**Applying a novel mathematical concept for the first time**

These new insights are the result of applying for the first time the novel mathematical concept of basin stability developed at PIK. “From energy grids to the Amazon jungle or human body cells, systems possess multiple stable states,” explains co-author Jürgen Kurths who leads the institute’s research domain 'Transdisciplinary Methods and Concepts'. “To understand blackouts, forest dieback, or cancer, it is crucial to quantify the stability of a system – and that’s precisely what we’re now able to do.”

The concept conceives a system’s alternative states as points in a mountainous landscape with steep rocks and deep valleys. The likelihood that a system returns to a specific sink after suffering a severe blow depends on how big this basin is. “We’re putting numbers on this,” says Kurths.

**Compared to the costs of a blackout, adding lines would be affordable**

“Compared to the potential costs of a blackout, adding a few transmission lines would definitely be affordable,” says co-author Hans Joachim Schellnhuber, director of PIK. “The new study gives just one example that innovative solutions, in our case even based on already existing technology, can indeed help master the transformation of our energy system, for many good reasons such as climate stabilization.”

Article: Menck, P.J., Heitzig, J., Kurths, J., Schellnhuber, H.J. (2014): How dead ends undermine power grid stability. Nature Communications [DOI:10.1038/ncomms4969]

Weblink to the article: http://www.nature.com/ncomms/2014/140609/ncomms4969/full/ncomms4969.html

Weblink to a related study on the concept of basin stability: http://www.pik-potsdam.de/news/press-releases/vom-regenwald-des-amazonas-bis-zu-...

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de

Jonas Viering | PIK Potsdam

More articles from Power and Electrical Engineering:

nachricht The world's most powerful acoustic tractor beam could pave the way for levitating humans
22.01.2018 | University of Bristol

nachricht Siberian scientists learned how to reduce harmful emissions from HPPs
22.01.2018 | Siberian Federal University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>