Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Connecting dead ends increases power grid stability

10.06.2014

Climate change mitigation strategies such as the German Energiewende require linking vast numbers of new power generation facilities to the grid.

As the input from many renewable sources is rather volatile, depending on how much the wind blows or the sun shines, there’s a higher risk of local power instabilities and eventually blackouts. Scientists from the Potsdam Institute for Climate Impact Research (PIK) now employed a novel concept from nonlinear systems analysis called basin stability to tackle this challenge. They found that connecting dead ends can significantly increase power grid stability. The findings are confirmed by a case study of the Scandinavian power system.

“The cheapest and thus widespread way to implement new generators into a high-voltage power grid is by simply adding single connections, like creating dead-end streets in a road network,” says Peter J. Menck, lead author of the study published in Nature Communications. To test the resulting system’s stability, the scientists simulated large perturbations in a standard electrical engineering model. “We found that in the power grid nodes close to the dead-end connections, the ability to withstand perturbations is largely reduced,” Menck says.

“Yet it turned out that this can be easily repaired by judiciously adding just a few transmission lines,” Menck says. Apparently, the provision of alternative routes in the network should allow for a dispersion of perturbation effects. Thereby, technical protection mechanisms at the different nodes of the grid can deal with problems, while dead ends make the effects culminate at single points of the network.

**Applying a novel mathematical concept for the first time**

These new insights are the result of applying for the first time the novel mathematical concept of basin stability developed at PIK. “From energy grids to the Amazon jungle or human body cells, systems possess multiple stable states,” explains co-author Jürgen Kurths who leads the institute’s research domain 'Transdisciplinary Methods and Concepts'. “To understand blackouts, forest dieback, or cancer, it is crucial to quantify the stability of a system – and that’s precisely what we’re now able to do.”

The concept conceives a system’s alternative states as points in a mountainous landscape with steep rocks and deep valleys. The likelihood that a system returns to a specific sink after suffering a severe blow depends on how big this basin is. “We’re putting numbers on this,” says Kurths.

**Compared to the costs of a blackout, adding lines would be affordable**

“Compared to the potential costs of a blackout, adding a few transmission lines would definitely be affordable,” says co-author Hans Joachim Schellnhuber, director of PIK. “The new study gives just one example that innovative solutions, in our case even based on already existing technology, can indeed help master the transformation of our energy system, for many good reasons such as climate stabilization.”

Article: Menck, P.J., Heitzig, J., Kurths, J., Schellnhuber, H.J. (2014): How dead ends undermine power grid stability. Nature Communications [DOI:10.1038/ncomms4969]

Weblink to the article: http://www.nature.com/ncomms/2014/140609/ncomms4969/full/ncomms4969.html

Weblink to a related study on the concept of basin stability: http://www.pik-potsdam.de/news/press-releases/vom-regenwald-des-amazonas-bis-zu-...

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de

Jonas Viering | PIK Potsdam

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>