Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conceptual Infrared Heat – The New MAX Infrared Oven for Efficient Industrial Solutions

27.02.2014

Tempering of glass, enameling, coating of metals or the sintering of ceramics all require very high temperatures. Such heating processes need a lot of energy, time and space.

Heraeus Noblelight has developed a new infrared oven – MAX – for high temperature heating processes. These new ovens combine infrared radiation with convection and optimum reflection. As such, they are superior to conventional industrial ovens. They are matched exactly to the heating process, so making it very stable. This helps to increase capacity and improve quality and the efficient ovens save space, time and energy. 


MAX Infrared ovens combine infrared radiation with convection and optimum reflection

Copyright Heraeus Noblelight, Hanau 2014

MAX – precisely tailored for maximum customer benefit

Juergen Weber, development project manager at Heraeus Noblelight, explains, “As they reach their maximum temperature within a very short time, the new MAX ovens flexibly meet customer requirements.’ The new oven can achieve a maximum product temperature of 900°C in less than ten minutes and can also cool down in less than ten minutes.This allows fast product change-over. The oven can also be used in both continuous and batch operation.

All MAX infrared ovens feature a compact construction, which utilizes the energy significantly more efficiently, because the infrared radiation is optimally reflected within the oven, which also uses natural convection. As a result, the process time can be reduced, significantly increasing energy efficiency and lowering operating costs. 

MAX Infrared ovens – extremely energy-efficient

MAX infrared ovens are currently used in Heraeus’ in-house application center for intensive trials on customer materials. “Coating metal plates or glass tempering are particularly energy-intensive processes creating enormous electricity costs,” continues Juergen Weber. “Our tests show that this new design of oven can save a third of this energy or more.” One of the ovens, with a heated length of 700mm and a chamber cross section of 150x150mm achieves the maximum emitter temperature in less than a minute when working in a continuous process. In constant operation at a holding temperature of 900°C, a holding power of around 3kW is all that is required because of the exceptional energy-efficiency. In addition, it has been shown that an extremely good homogeneity can be achieved with a temperature difference within the product of only +/- 2°C. 

Advantages of QRC® Material Over Standard Ovens

Tests demonstrate clear advantages over standard ovens, which use fireclay as the insulation material. In MAX infrared ovens quartz glass materials with QRC® nano-reflectors (QRC = quartz reflective coating) are used exclusively inside the oven. The QRC® reflector, developed by Heraeus, features opaque, white quartz glass. Its nanostructure imparts a diffuse reflective capability to the material, resulting in a very high homogeneity of the temperature field.

Quartz glass is extremely heat-resistant and widely resistant to the attack of acids and other aggressive substances. It has excellent mechanical stability, even at very high temperatures.

From simulation to final solution

MAX infrared ovens enable system solutions. Computer simulations at the design phase help to create an energy-efficient heating process. MAX oven elements can be arranged one after the other in modular fashion and individually controlled, allowing fast product change-over. In addition, the ovens can be easily connected with conveyor systems.

Infrared emitters can be precisely matched to product and process, saving energy and cost. Infrared heating should always be considered for heating processes which have important requirements in terms of space, time or quality. Heraeus offers infrared emitters, controllers and handling solutions to meet these requirements.

The precious metals and technology group Heraeus headquartered in Hanau, Germany, is a global, family company with over 160 years of tradition. Our businesses include precious metals, materials and technologies, sensors, biomaterials and medical products, quartz glass, and specialty lighting sources. With product revenues of € 4.2 billion and precious metal trading revenues of € 16 billion in 2012, Heraeus has around 12,200 employees in more than 100 companies worldwide and holds a leading position in its global markets. 

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2012, Heraeus Noblelight had an annual turnover of 92.5 Million € and employed 715 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques.

Heraeus Noblelight acquired the Fusion UV Systems Group, headquartered in Gaithersburg, Maryland, USA, on 31 January 2013. 

For further information, please contact:
 
Technical:        Heraeus Noblelight GmbH
                       Reinhard-Heraeus-Ring 7
                       D-63801 Kleinostheim
                       Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
                       E-Mail hng-infrared@heraeus.com
 
Press:              Dr. Marie-Luise Bopp
                       Heraeus Noblelight GmbH,
Marketing
                       Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
                       E-Mail marie-luise.bopp@heraeus.com
                        www.heraeus-noblelight.com/infrared 

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH

More articles from Power and Electrical Engineering:

nachricht JULABO's New Presto<sup>®</sup> W50 and W50t - High dynamic temperature control systems for laboratories and industrial applications
03.02.2016 | JULABO GmbH

nachricht Higher efficiency through soft switching
03.02.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>