Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer in Wrapping-Paper Form

15.09.2010
New Manufacturing Approach May Lower Solar Energy Costs

Driven by rapid global industrialization, finite fossil fuel reserves, and the high cost of many alternative energy options, meeting the world’s energy challenge may demand novel solutions. One potential solution has its roots in the ubiquitous industrial invention: the factory.

Investigators at SUNY Binghamton's Center for Advanced Microelectronics Manufacturing (CAMM) -- the only center of its kind in the United States -- are giving factory production of solar energy cells a modern makeover. Their approach includes the use of “continuous electronic sheets,” something like a computer flattened into wrapping paper to perform its many functions. They describe their new approach in the Journal of Renewable and Sustainable Energy, which is published by the American Institute of Physics.

Explains lead researcher Howard Wang, "The goal is to apply the next generation of manufacturing to addressing the energy challenge in the way solar cells are produced. We think nanoscale engineering is the key to this new low-cost opportunity for enhancing the solar energy landscape."

Doing this includes: the use of large-scale, flexible format; roll-to-roll manufacturing, a process resembling the printing process of newspapers; and the use of continuous electronic sheets.

To reach this goal, the Wang team devised a promising hybrid material that has high structural quality but is compatible with the roll-to-roll processing technique.

"By driving the cost of production down and maintaining quality with the hybrid," says Wang, "we can create a product that can be competitive with silicon-based products."

The article, "Vertically Aligned ZnO Nanodisks and Their Uses in Bulk Heterojunction Solar Cells" by Congkang XU, Kaikun Yang, Liwei Huang, and Howard Wang (State University of New York, Binghamton) appears in the Journal of Renewable and Sustainable Energy. http://link.aip.org/link/jrsebh/v2/i5/p053101/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY
Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal published by the American Institute of Physics (AIP) that covers all areas of renewable and sustainable energy-related fields that apply to the physical science and engineering communities. As an electronic-only, Web-based journal with rapid publication time, JRSE is responsive to the many new developments expected in this field. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. See: http://jrse.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>