Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Company Expects Sun to Shine on Chicago Invention

23.01.2009
Solarmer Energy Inc. is developing plastic solar cells for portable electronic devices that will incorporate technology invented at the University of Chicago.

The company is on track to complete a commercial-grade prototype later this year, said Dina Lozofsky, vice president of IP development and strategic alliances at Solarmer. The prototype, a cell measuring eight square inches (50 square centimeters), is expected to achieve 8 percent efficiency and to have a lifetime of at least three years.

“New materials with higher efficiencies are really the key in our industry. Plastic solar cells are behind traditional solar-cell technology in terms of the efficiency that it can produce right now,” Lozofsky said. “Everyone in the industry is in the 5 percent to 6 percent range.”

The invention, a new semiconducting material called PTB1, converts sunlight into electricity. Inventors Luping Yu, Professor in Chemistry, and Yongye Liang, a Ph.D. student, both at the University of Chicago, and five co-authors describe the technical details of the technology in an online article published Dec. 18, 2008, in the Journal of the American Chemical Society.

“Yongye is very knowledgeable and skillful. Very creative,” Yu said. “He is mainly responsible for the progress of this project.”

The active layer of PTB1 is a mere 100 nanometers thick, the width of approximately 1,000 atoms. Synthesizing even small amounts of the material is a time-consuming, multi-step process. “You need to make sure what you have is what you think you have,” Yu said.

The University licensed the patent rights to the technology to Solarmer last September. The license covers several polymers under development in Yu’s laboratory, said Matthew Martin, a project manager at UChicagoTech, the University’s Office of Technology and Intellectual Property. A patent is pending.

An advantage of the Chicago technology is its simplicity. Several laboratories around the country have invented other polymers that have achieved efficiencies similar to those of Yu’s polymers, but these require far more extensive engineering work to become a viable commercial product.

“We think that our system has potential,” Yu said. “The best system so far reported is 6.5 percent, but that’s not a single device. That’s two devices.”

By combining Solarmer’s device engineering expertise with Yu and Liang’s semiconducting material, they have been able to pushe the material’s efficiency even higher. Based in El Monte, Calif., Solarmer was founded in 2006 to commercialize technology developed in Professor Yang Yang’s laboratory at the University of California, Los Angeles. The company is developing flexible, translucent plastic solar cells that generate low-cost, clean energy from the sun.

Yu began working with Solarmer at the suggestion of UCLA’s Yang, a professor of materials science and engineering. Yu’s research specialties include the development of new polymers, long chains of identical atoms that chemists hook together to form plastics and other materials.

Yu’s research program includes funding from the National Science Foundation and a Collaborative Research Seed Grant from the University of Chicago and Argonne National Laboratory. Solarmer has entered into a sponsored research agreement with the University to provide additional support for a postdoctoral researcher in Yu’s lab. The company looks forward to the identification of new polymers as a result of this collaboration, Lozofsky said.

Silicon-based solar cells dominate the market today. Industry observers see a promising future for low-cost, flexible solar cells, said UChicagoTech’s Martin. “If people can make them sufficiently efficient, they may be useful for all sorts of applications beyond just the traditional solar panels on your house rooftop,” he said.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>