Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Communication for E-vehicle energy management systems

13.11.2013
To connect electric vehicles to the power grid seamlessly, engineers at Fraunhofer ESK have specified and implemented the required communication interface as part of the EU-sponsored SMARTV2G project (smart vehicle-to-grid interface).

The aim is to create a system in which electric vehicles use and temporarily store energy. The charging station serves as an active node that communicates with the vehicle and an energy management system in the smart grid.


The use of smart grids in the field of electromobility calls for the development of new communication interfaces. Copyright: formidee designbüro

One of the benefits for drivers is access to variable energy rates. This approach also allows the energy provider or grid operator to integrate the electric vehicle into the energy management system of the smart grid.

Digital information flow for more convenient driving
As part of the SmartV2G project, engineers analyzed all of the information flows needed to support vehicle-to-grid integration. Using this information as a basis, they identified the relevant infrastructure components, designed the underlying communication architecture and derived the functional and technical specifications. The communication path was then implemented and evaluated. The extensive communication that occurs between the energy management system and the electric vehicle – whether at the charging station or on the road – provides a more convenient driving experience and leads to improved energy efficiency and lower costs.

Information such as location, opening hours, number of open charging stations, current energy rates and available payment options will provide drivers a range of benefits. Charging stations situated within the vehicle’s estimated operating range can be reserved even while driving. Another advantage for drivers involves taking into account individual preferences such as planned driving routes and simplified billing models, which are made possible through automatic vehicle identification. Time-shifted charging makes optimal use of the grid’s capacity, a feature that can eventually contribute to maintaining a stable energy network. This is a key issue for energy providers and operators because sufficient renewable energy supplies are not always on-hand and that means drivers have to be highly flexible. In the end, consumers, energy providers and grid operators will all reap significant benefits from the SmartV2G project innovations.

Globalizing E-vehicles through standards
Researchers are creating a uniform, manufacture-independent specification for the E-vehicle-to-charging station communication through ISO/IEC15118. This standard defines a comprehensive exchange of information that is essential for the “smart” charging process. Communication between the charging station and the smart grid will be based on an enhancement of the IEC 61850 global standard. Fraunhofer ESK researchers are the driving force behind the further development of the IEC61850-90-8 specification, which to date has been available in draft form. By combining the two standards, the charging station is transformed into a node that integrates the electric vehicle charging process into the smart grid.

Demonstrator

A demonstrator developed by Fraunhofer ESK runs through the entire information chain, from the vehicle to the control center energy management system. This results in the exchange of a variety of information such as battery status, charging progress, charging mode, authentication data and price and payment information.

The SMARTV2G (smart vehicle-to-grid interface) project is being funded through the European Union’s Seventh Framework Program (FP7).

PR & Marketing Contact
Marion Rathmann | Fraunhofer Institute for Embedded Systems and Communication Technologies ESK | Tel +49 89 547088-395

Hansastraße 32 | 80686 München | www.esk.fraunhofer.de | marion.rathmann@esk.fraunhofer.de |

Unternehmenskommunikation | Fraunhofer-Institut
Further information:
http://www.esk.fraunhofer.de/en/media.html

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>