Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Coming Soon: Improved Lithium Ion Batteries?

Three-dimensional porous silicon is a highly efficient lithium-storing anode

Rechargeable lithium ion batteries provide portable devices that require a lot of energy, such as mobile telephones, digital cameras, and notebook computers, with power. However, their capacity, and thus the running time of the devices, remain somewhat limited.

A notebook computer thus usually runs only about two hours. The reason for this is the relatively small capacity of the graphite anode in these batteries to absorb lithium ions. A team led by Jaephil Cho at Hanyang University in Korea has now developed a new material for anodes, which could clear a path for a new generation of rechargeable batteries. As reported in the journal Angewandte Chemie, their new material involves three-dimensional, highly porous silicon structures.

Lithium ion accumulator batteries produce current by moving lithium ions. The battery usually contains a cathode (positive electrode) made of a mixed metal oxide, such as lithium cobalt oxide, and an anode (negative electrode) made of graphite. While the battery is being charged, lithium ions migrate into the anode, where they are stored between the graphite layers. When the battery is being discharged, these ions migrate back to the cathode.

It would be nice to have an anodic material that could store more lithium ions than graphite. Silicon presents an interesting alternative. The problem: silicon expands a great deal while absorbing lithium ions (charging) and shrinks when giving them up (discharging). After several cycles the required thin silicon layers are pulverized and can no longer be charged.

Cho’s team has now developed a new method for the production of a porous silicon anode that can withstand this strain. They annealed silicon dioxide nanoparticles with silicon particles whose outermost silicon atoms have short hydrocarbon chains attached to them at 900 °C under an argon atmosphere. The silicon dioxide particles were removed from the resulting mass by etching. What remained were carbon-coated silicon crystals in a continuous, three-dimensional, highly porous structure.

Anodes made of this highly porous silicon have a high charge capacity for lithium ions. In addition, the lithium ions are rapidly transported and stored, making rapid charging and discharging possible. A high specific capacity is also attained with high current. The changes in volume that occur upon charging and discharging cause only a small degree of swelling and shrinking of the pore walls, which have a thickness of less than 70 nm. In addition, the first charging cycle results in an amorphous (noncrystalline) silicon mass around residual nanocrystals in the pore walls. Consequently, even after 100 cycles, the stress in the pore wall is not noticeable in the material.

Author: Jaephil Cho, Hanyang University, Ansan (South Korea),

Title: Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries

Angewandte Chemie International Edition, doi: 10.1002/anie.200804355

Jaephil Cho | Angewandte Chemie
Further information:

More articles from Power and Electrical Engineering:

nachricht Did you know that specialty light sources are being used for water analysis?
22.03.2018 | Heraeus Noblelight GmbH

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>