Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cobalt Poor and Rich lixNi1-yCoyO2 Layered Materials For Li-Ion Battery Application


Researchers from the Institute of Science, University Teknologi MARA Selangor conducted a study into the possibility of using new and cost effective compounds in Li ION battery application.

Layered compounds are being investigated extensively due to their high theoretical specific capacities and relatively good cyclability. The electrochemical performance of a layered cathode material depends, to some extent, on the lattice parameters and structural stability of the crystal framework as well as, to a large extent, on the cation ordering of the compounds.

Copyright : Wikimedia

Lithium cobalt oxide (LiCoO2) is an excellent cathode material but expensive, toxicity and not abundant in nature. Therefore, it is logical to produce materials with less Co content for commercial application.

LiNiO2 has the advantage of being cheaper. However, it is unstable and do not exhibit good electrochemical properties. Substitution of Co with Ni may improve the structural stability of LixNi1-yCoyO2 system and may reduce production cost due to the least of Co content.

Many groups of researchers have attempted to synthesize some stoichiometries of LixNi1-yCoyO2, but their XRD results show the presence of impurities. Other researchers have produced hexagonal structure but with poor cation ordering with high (104) peaks relative to the (003) peak.

In this work, layered LixN1-yCoyO2 (x= 1.0, 1.05, 1.1: y= 0.0, 0.1, ...., 0.5) via a novel self-propagating combustion synthesis and its electrochemical properties are investigated. The most obvious advantage of using this combustion route is the ease of the method and speed of the reaction which is over in a few seconds. The precursors are already in the dry form, and, subsequently, the thermal annealing can be done directly without further drying or precalcination process.

Therefore, the synthesis method has the advantage of producing homogeneous materials with the resulting final products free from impurities, even for the Ni-rich stoichiometries. Simultaneous Thermogravimetric Analysis (STA), X-Ray Diffraction (XRD) , Field Emission Scanning Electron Microscopy (FESEM) and Energy DIspersive X-Ray Spectroscopy were used to characterize all the materials. The characterization of all samples shows pure and single phase layered hexagonal structured materials obtained at 700 degree celcius for 24 h, 48 h and 72 h with a polyhedral like morphology. This means that the Ni-ions have been successfully substituted in the LiCoO2 structure.

It can be clearly observed that all of the fingerprint peaks, namely, (003), (101), (006), (012), (104), (018), and (110) are easily identifiable in all of the XRD patterns. All the diffraction peaks can be indexed with alfa-NaFeO2-type structure based on the hexagonal crystal system with R-3m space group. They are isostructural with LiNiO2 and LiCoO2 phases as compared with the XRD patterns in the ICDD database. The EDX results give atomic percent for each sample and agreeable to calculated synthesized values, from cyclic voltammetry, the maximum voltage can reached up to 5.0 V and minimum voltage is 2.3 V.

The LixNi1-yCoyO2 materilas show good promise as cathode materials. The best performance of cathode materials are LiNi0.5Co0.5O2 with the specific capacity of 158.2 mAh/g, Li1.05Ni0.6Co0.4O2 with the specific capacity of 155.3 mAh/g, Li1.05Ni0.7Co0.3O2 with the specific capacity of 153.9 mAh/g, Li1.05Ni0.7Co0.3O2 with the specific capacity of 148.1 mAh/g, Li1.1Ni0.6Co0.4O2 with the specific capacity of 145.7 mAh/g, LiNi0.7Co0.3O2 with the specific capacity of the 144.4 mAh/g, Li1.1Ni0.7Co0.3O2 and Li1.1Ni0.5Co0.5O2 with the specific capacity of 142.8 mAh/g.

Professor Dr.
Universiti Teknologi MARA, Selangor
Institute of Science

Darmarajah Nadarajah | ResearchSEA
Further information:

Further reports about: Li-Ion LiCoO2 UiTM capacity cathode cathode materials materials synthesis voltage

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>