Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cobalt Poor and Rich lixNi1-yCoyO2 Layered Materials For Li-Ion Battery Application

29.04.2015

Researchers from the Institute of Science, University Teknologi MARA Selangor conducted a study into the possibility of using new and cost effective compounds in Li ION battery application.

Layered compounds are being investigated extensively due to their high theoretical specific capacities and relatively good cyclability. The electrochemical performance of a layered cathode material depends, to some extent, on the lattice parameters and structural stability of the crystal framework as well as, to a large extent, on the cation ordering of the compounds.


Copyright : Wikimedia

Lithium cobalt oxide (LiCoO2) is an excellent cathode material but expensive, toxicity and not abundant in nature. Therefore, it is logical to produce materials with less Co content for commercial application.

LiNiO2 has the advantage of being cheaper. However, it is unstable and do not exhibit good electrochemical properties. Substitution of Co with Ni may improve the structural stability of LixNi1-yCoyO2 system and may reduce production cost due to the least of Co content.

Many groups of researchers have attempted to synthesize some stoichiometries of LixNi1-yCoyO2, but their XRD results show the presence of impurities. Other researchers have produced hexagonal structure but with poor cation ordering with high (104) peaks relative to the (003) peak.

In this work, layered LixN1-yCoyO2 (x= 1.0, 1.05, 1.1: y= 0.0, 0.1, ...., 0.5) via a novel self-propagating combustion synthesis and its electrochemical properties are investigated. The most obvious advantage of using this combustion route is the ease of the method and speed of the reaction which is over in a few seconds. The precursors are already in the dry form, and, subsequently, the thermal annealing can be done directly without further drying or precalcination process.

Therefore, the synthesis method has the advantage of producing homogeneous materials with the resulting final products free from impurities, even for the Ni-rich stoichiometries. Simultaneous Thermogravimetric Analysis (STA), X-Ray Diffraction (XRD) , Field Emission Scanning Electron Microscopy (FESEM) and Energy DIspersive X-Ray Spectroscopy were used to characterize all the materials. The characterization of all samples shows pure and single phase layered hexagonal structured materials obtained at 700 degree celcius for 24 h, 48 h and 72 h with a polyhedral like morphology. This means that the Ni-ions have been successfully substituted in the LiCoO2 structure.

It can be clearly observed that all of the fingerprint peaks, namely, (003), (101), (006), (012), (104), (018), and (110) are easily identifiable in all of the XRD patterns. All the diffraction peaks can be indexed with alfa-NaFeO2-type structure based on the hexagonal crystal system with R-3m space group. They are isostructural with LiNiO2 and LiCoO2 phases as compared with the XRD patterns in the ICDD database. The EDX results give atomic percent for each sample and agreeable to calculated synthesized values, from cyclic voltammetry, the maximum voltage can reached up to 5.0 V and minimum voltage is 2.3 V.

The LixNi1-yCoyO2 materilas show good promise as cathode materials. The best performance of cathode materials are LiNi0.5Co0.5O2 with the specific capacity of 158.2 mAh/g, Li1.05Ni0.6Co0.4O2 with the specific capacity of 155.3 mAh/g, Li1.05Ni0.7Co0.3O2 with the specific capacity of 153.9 mAh/g, Li1.05Ni0.7Co0.3O2 with the specific capacity of 148.1 mAh/g, Li1.1Ni0.6Co0.4O2 with the specific capacity of 145.7 mAh/g, LiNi0.7Co0.3O2 with the specific capacity of the 144.4 mAh/g, Li1.1Ni0.7Co0.3O2 and Li1.1Ni0.5Co0.5O2 with the specific capacity of 142.8 mAh/g.

Professor Dr.
CHE NORLIDA BINTI KAMARULZAMAN
Universiti Teknologi MARA, Selangor
Institute of Science
INSTITUTE OF SCIENCE (IOS)
norlyk@salam.uitm.edu.my

Darmarajah Nadarajah | ResearchSEA
Further information:
http://www.uitm.edu.my
http://www.researchsea.com

Further reports about: Li-Ion LiCoO2 UiTM capacity cathode cathode materials materials synthesis voltage

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>