Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clemson scientists put a (nano) spring in their step

15.08.2008
Electronic devices get smaller and more complex every year. It turns out that fragility is the price for miniaturization, especially when it comes to small devices, such as cell phones, hitting the floor. Wouldn’t it be great if they bounced instead of cracked when dropped?

A team of Clemson University researchers, led by Apparao Rao, professor of physics, has invented a way to make beds of tiny, shock-absorbing carbon springs which possibly could be used to protect delicate objects from damaging impacts. With collaborators at the University of California at San Diego, the team has shown that layers of these tiny springs called coiled carbon nanotubes, each a thousand times smaller than a human hair, can act as extremely resilient shock absorbers.

Similar coiled carbon nanotubes have been made before, yet Clemson researchers say this method is unique since beds of coiled carbon nanotubes can be grown in a single step using a proprietary hydrocarbon-catalyst mixture.

The group also envisions coiled nanotubes in soldiers’ body armor, car bumpers and bushings and even as cushioning elements in shoe soles.

“The problem we have faced in the past is producing enough of these coiled carbon nanotubes at a reasonable cost to make a difference,” said Rao. “Because our current method produces coiled nanotubes quickly in high yield, it can be readily scaled up to industrial levels. After formation, the coiled nanotubes can be peeled off in one piece and placed on other surfaces to form instant cushioning coatings.”

In earlier studies, Rao and his team, along with UCSD collaborators, tested more conventional straight carbon nanotubes against coil-shaped nanotubes. When a stainless steel ball was dropped onto a single nanotube layer, the coiled nanotubes completely recovered from the impact, while the straight ones did not.

“It’s like an egg toss,” said Rao. “If you move your hand backward as you catch the egg and increase the time of contact over which the impact occurs, the impact will be less forceful and the egg will not break. It is the same phenomenon experienced in catching a baseball.”

In previous work, Rao’s group developed a process that coaxes a traditionally straight carbon nanotube to split into a “Y” shape. When powered by electrical voltages, the Y-branched nanotubes behave like tiny switches or transistors that process information.

“Our studies with carbon nanotubes have been ongoing for quite some time,” said Rao. “Each step along the way has led to the next breakthrough, and each time we’ve learned more about how they grow and what their applications could be. We believe that carbon nanotubes have tremendous potential for the lives of each one of us.”

Publications:

Advanced Materials 2008, 20, 179-182
http://people.clemson.edu/~arao/publications/Bulkmethod.pdf
Journal of Applied Physics 100, 064309 (2006)
http://people.clemson.edu/~arao/publications/Resilience.pdf
Nature Materials
http://people.clemson.edu/~arao/publications/switching%20y-junctions.pdf
Journal of Applied Physics 101, 094307 (2007)
http://people.clemson.edu/~arao/publications/Mechanism.pdf

Apparao Rao | EurekAlert!
Further information:
http://www.clemson.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>